# Surface Water Quality Monitoring Data Management Reference Guide

Water Quality Planning Division, Monitoring & Assessment Section, Data Management & Analysis Team 12/22/2016

| Chapter 1 – Introduction to the SWQM Data Management Reference Guide | 1-1  |
|----------------------------------------------------------------------|------|
| Chapter 2 – Parameter and Constituent Code Requests                  | 2-1  |
| Parameter Code Request - Description                                 | 2-1  |
| Request Process                                                      | 2-1  |
| Parameter/Constituent Code Request Fields                            | 2-1  |
| Parameter Inventory Report                                           | 2-3  |
| Chapter 3 – SWQM Station Location (SLOC) Request                     | 3-1  |
| Process for Requesting New Stations or Correcting Existing Stations  |      |
| Expedited SLOC Requests                                              | 3-2  |
| Batch Upload SLOC Requests                                           | 3-2  |
| SLOC Maps                                                            |      |
| SLOC Request Field Descriptions                                      |      |
| Monitoring Station Inventory Report                                  | 3-11 |
| Chapter 4 – Submitting Entity and Collecting Entity Codes            | 4-1  |
| Submitting Entity Codes                                              | 4-1  |
| Collecting Entity Codes                                              | 4-3  |
| Chapter 5 – Tag Prefixes                                             | 5-1  |
| Chapter 6 – Commonly Used Parameter Codes                            | 6-1  |
| Field Data                                                           | 6-1  |
| Bacteria Data                                                        | 6-2  |
| Metals in Sediment Data                                              | 6-10 |
| Organics in Sediment Data                                            | 6-11 |
| EPA Species Numeric Code                                             | 6-20 |
| EPA Anatomical Numeric Code                                          | 6-25 |
| Biological Data                                                      | 6-26 |
| Chapter 7 – Data Reporting                                           | 7-1  |
| TCEQ Region and Central Office Staff                                 | 7-1  |
| Laboratory Information Management System (LIMS)                      | 7-1  |
| TCEQ Partners and Contractors                                        | 7-1  |
| LIMS File Format                                                     | 7-6  |
| Chapter 8 – Data Review                                              | 8-1  |
| SWQMIS Data Loading Report                                           | 8-1  |
| Data Dictionary for the SWQMIS Data Loading Validator Report         |      |
| Data Management Review                                               | 8-2  |
| Chapter 9 – Data Corrections                                         | 9-1  |
| SWQM Data Correction Request Description                             |      |
| Data Correction Process                                              | 9-1  |

| Data Correction Required Information                             |      |
|------------------------------------------------------------------|------|
| Documentation                                                    |      |
| Chapter 10 – Data Qualification                                  | 10-1 |
| SWQM Program Quality Control Sample Validation and Qualification | 10-1 |
| Chapter 11 – Database Reports                                    | 11-1 |
| To access SWQMIS                                                 | 11-1 |
| Types of Reports                                                 | 11-1 |
| Chapter 12 – Biological Data Recording and Reporting             | 12-1 |
| Introduction                                                     | 12-1 |
| Biological Data Specifics – All Providers                        | 12-1 |
| TCEQ Regional and Central Office Staff                           | 12-2 |
| TCEQ Partner Agencies and Contractors                            | 12-4 |
| Examples                                                         | 12-5 |
| Chapter 13 – Monitoring Type Codes                               | 13-1 |
| Choosing the Appropriate Monitoring Type Code                    | 13-1 |
| Chapter 14 – Request for Analysis Form                           | 14-1 |
| Life Cycle of an RFA                                             |      |
| How Many RFAs are Needed?                                        |      |
| Additional Information                                           | 14-4 |
| Appendix A – Maps                                                | A-1  |
| Appendix B – EPA Stream Station Types                            | B-1  |
| Appendix C – Fish Tissue Data Reporting Guidance                 | C-1  |
| Tissue Samples—Recording Data on the RFA                         | C-2  |
| Tissue Samples—Reporting Required Data                           | C-2  |
| Appendix D – Geographic Information Codes                        | D-1  |
| Codes for SLOC Requests                                          | D-2  |
| Appendix E – Data Qualifiers                                     | E-1  |
| References                                                       | R-1  |

## Chapter 1 – Introduction to the SWQM Data Management Reference Guide

The purpose of this guide is to assist the Texas Commission on Environmental Quality (TCEQ) Clean Rivers Program (CRP) partner agencies, Total Maximum Daily Load (TMDL) Program contractors, Surface Water Quality Monitoring (SWQM) Program staff, Water Quality Standards (WQS) Group staff and contractors, Non-Point Source (NPS) Program contractors, and any other TCEQ programs or external entities submitting data to the TCEQ Surface Water Quality Monitoring Information System (SWQMIS) database. This guide outlines the processes for requesting parameter codes, station ID numbers, submitting and collecting entity codes, tag prefixes, corrections to data in SWQMIS, and data reports. It also explains data review and data reporting (including data reporting formats) and contains reference maps, tables, and descriptions for use when submitting data to the TCEQ. Guidance is also provided for using SWQMIS tools to extract and interact with data in the database.

No substantive changes were made to the guide this year.

The original water monitoring program was established in 1967 with the purpose of collecting and analyzing the data necessary to describe the water quality of Texas streams, reservoirs and estuaries. Today, SWQMIS contains more than 45 years of physicochemical and biological data from up to 9,500 monitoring stations throughout Texas. This data is collected by the TCEQ, contributing river authorities, cities, and other local, state, and federal agencies.

The TCEQ maintains SWQMIS. This database serves as a repository for TCEQ surface water quality data. SWQMIS also provides data validation and reporting tools, a mapping interface, and modules for tracking information about projects and quality assurance documents. Forms related to the TCEQ's surface water quality programs data and SWQMIS are available in the Forms module of SWQMIS. These forms include the SWQMIS Change Request Template, the Data Correction Request, the Data Review Checklist, the Parameter/Constituent Request, and the Submitting Entity/Collecting Entity/Monitoring Type Request.

The Water Quality Planning Division, Monitoring and Assessment Section's Data Management and Analysis Team (DM&A) is responsible for the management of surface water quality data and metadata in cooperation with other TCEQ water programs and the Information Resources Division (IRD). This responsibility includes documentation and maintenance of records relating to the processes described in this document. Relationships between DM&A and other water program areas are documented in project-specific Quality Assurance Project Plans (QAPPs). Data not meeting quality objectives set forth in these QAPPs may be stored in SWQMIS with appropriate qualifiers (see Chapter 10).

The statewide water quality database has received data since 1967, allowing for the assessment of short- and long-term trends. This data may be used by TCEQ to characterize existing conditions, evaluate spatial and temporal trends, develop water quality standards, determine water quality standards compliance, identify emerging problems, and evaluate the effectiveness of water quality control programs.

For additional information contact:

Texas Commission on Environmental Quality Water Quality Planning Division P.O. Box 13087, MC-234 Austin, Texas 78711-3087 Phone: (512) 239-1678 Fax: (512) 239-4410

## Chapter 2 – Parameter and Constituent Code <u>Requests</u>

## **Parameter Code Request - Description**

All parametric data entered into the SWQMIS database is identified using a unique 5-digit parameter code. Each parameter is also associated with a constituent. A parameter is a given constituent measured in a specific media by a specified method. A constituent is an element, compound, organism, or water characteristic in its most basic form.

The <u>SWQMIS Parameter/Constituent Code Request Form</u>, referred to as the Parameter Request Form, is to be used when adding a new parameter, a new constituent code, changing an existing parameter, or an existing constituent code in SWQMIS. This form is available from the hyperlink above, or SWQMIS users can access the Parameter Request Form in the SWQMIS module named 'Forms'.

For a current list of all existing parameter codes in the SWQMIS database, go to <u>http://www.tceq.texas.gov/waterquality/clean-rivers/data/storet.html</u>, or contact the <u>DM&A</u> Team directly.

SWQMIS users can use the SWQMIS Parameter Inventory Report to obtain a complete list of parameter codes stored in the database.

### **Request Process**

- 1. Submit SWQMIS parameter code requests on the Parameter Request Form located under the Forms Module in the <u>SWQMIS database</u> or from <u>TCEQ's external website</u>. Submit the completed form by pressing the 'Submit Form' button located at the top right corner of the form. A pop-up window will appear asking for the email client in use. There are two options
  - i. If you select the Desktop Email Application option, an email will auto-generate with the completed form attached. Press 'Send' to submit your form to the DM&A Team at wdma@tceq.texas.gov.
  - ii. If you select the Internet Mail option, your computer's browser window will open prompting you to save the form. Generate an email to <u>wdma@tceq.texas.gov</u> and attach the completed Parameter Request Form.
- 2. When the DM&A Team receives your request, a data manager will either contact you for more information or complete the request in about 10 business days.
- 3. Once your request is completed, DM&A will notify you via email and attach the completed <u>Parameter Request Form</u> with the new or modified Parameter/Constituent Code information.

## Parameter/Constituent Code Request Fields

#### Information Provided by the Requestor

To request a new or revised parameter/constituent code, complete the shaded portion of the request form.

### **Check Action Required**

Check the appropriate box —add a new code to the database or make changes to an existing code.

#### **Person Submitting Request**

Enter your name in the field.

#### Agency or Contractor Name

Enter the name of your agency or the contractor making the request.

#### **Program Area**

Enter the TCEQ program area with which the request is associated.

### **QAPP** Title

Enter the title of the QAPP with which the request is associated.

#### **Contact Phone**

Enter a contact phone number in case any questions arise during the processing of the request.

#### **Explanation of Request**

Provide a brief explanation of why you are requesting the action.

#### Parameter

Provide a brief description of the parameter.

#### **Parameter Code**

If the request is for a change, enter the existing parameter code. Otherwise, leave this field blank.

#### Media

Enter the media in which the parameter is measured (water, sediment, tissue, etc.).

#### **Unit of Measure**

Enter the measurement units for the parameter. Enter NA if this field is not applicable.

#### **Analytical Method**

Enter the analytical method associated with the parameter. Indicate if this is an EPA approved method. Enter NA if this field is not applicable.

#### Analytical Method Number

Enter the number associated with the analytical method. Enter NA if this field is not applicable.

#### Information Provided by DM&A Staff

DM&A staff will complete the following form fields.

#### **Parameter Code**

DM&A assigns a unique 5-digit parameter code for new parameter requests, or they will use the code you provided.

#### **Constituent ID**

DM&A assigns the ID of the constituent for each parameter. For example, if the requested parameter were suspended organic carbon, DM&A would assign the parameter to the constituent ID for carbon.

#### CAS Number

DM&A identifies the CAS (Chemical Abstracts Service) number associated with the constituent, if applicable.

#### **Constituent Category**

DM&A assigns each constituent to a category in SWQMIS. These categories include Physical/Chemical, Algae, Habitat, Benthos, Phytoplankton, Zooplankton, Nekton, Macrophytes, and NS (Not Specified).

#### **Parameter Description**

#### DM&A develops a parameter description.

#### **Minimum Value**

DM&A sets a minimum threshold value for the parameter. This value sets a data quality control check.

#### **Maximum Value**

DM&A sets a maximum threshold value for the parameter. This value sets a data quality control check. Results greater than this value require verification when data is manually entered or flat-file loaded into SWQMIS.

#### **Entered in SWQMIS**

The DM&A Data Manager signs the completed form verifying the change in SWQMIS.

#### **Date Entered**

The DM&A Data Manager provides the date the action was completed.

## **Parameter Inventory Report**

SWQMIS contains over 5,800 parameter codes used to report data to the TCEQ and should not be confused with the list of STORET codes maintained by the EPA. The SWQMIS Parameter Inventory Report lists parameter codes and associated parameter metadata. Data providers should review this report when planning new or different sampling or analyses. If an existing code does not accurately represent the planned sampling or analyses, a new code is requested using the Parameter Request Form.

The following fields are included in a Parameter Inventory Report.

- Parameter Code
- Parameter Description
- Units of Measure
- Media
- Method
- CAS Number

## Chapter 3 – SWQM Station Location (SLOC) <u>Request</u>

All parametric data entered into the sampling module of the SWQMIS database must be associated with a permanent monitoring station identified by a 5-digit Station Identification code (Station ID). A SWQM Station Location (SLOC) Request is submitted via the SWQMIS interface to:

- Create a new permanent Station ID, or
- Make a change to an existing permanent Station ID.

## **Process for Requesting New Stations or Correcting Existing Stations**

- Review the inventory of existing stations in SWQMIS prior to requesting a new station. A station may already exist at or very near the desired sampling location. This can be done either by running a Station Inventory Report or by using the Map Viewer in SWQMIS. A new Station ID is not required if the proposed sampling location is within 400 meters up or downstream of an existing stream station, or within a 400 meter radius in reservoirs and bays and if the existing station is representative of the same hydrologic, biologic, or water quality conditions. If the existing station does not accurately represent conditions at the new sampling location, a new station is necessary. For example, if there are conditions such as discharge points, a confluence with an adjoining stream, restrictions of flow, dams, any construction that might affect the stream, or differences in water depth that could influence circulation, a SLOC Request accurately describing the new location should be submitted. If the specific sampling design requires stations closer together than 400 meters, please specify this in the Monitoring Stations "General Comments" section on the Attachments and Status page within the request.
- 2. The monitoring entity may submit a SLOC directly if they are authorized to log into SWQMIS. Alternatively, the submitting entity (TCEQ Program project managers in particular) may choose to do this on behalf of the monitoring entity. TCEQ Regional staff who perform SWQM monitoring submit SLOC requests directly. Anyone filling out a SLOC may choose to save the SLOC prior to submitting it, to continue editing the request later.
- 3. For new stations, all required fields in the SLOC Create screens must be filled out by the requestor: SWQMIS will not allow an incomplete SLOC to be submitted. To request changes to an existing station, the SLOC screen will open populated with the data already existing for that station. Make changes to any fields as appropriate. All other fields (where no changes are desired) should be left as they are. Fields are defined later in this chapter.
- 4. A map image with scale 1:24,000 or greater, clearly depicting any proposed new station location must accompany the SLOC request form. The map must unambiguously define any nearby major highways, roads, streams, or physiographic features to facilitate verification of the station location. All base maps must be a 1:24,000 scale (7.5-minute series) United States Geological Survey (USGS) topographic map and/or a spatially correct digital orthophoto quarter quadrangle (DOQQ) with resolution of at least 1 meter. The map image must include any major long description landmarks and must be labeled. More information and resources are included in the SLOC Maps section of this chapter.
- 5. The SLOC Request is entered into SWQMIS and submitted with a map attached. DM&A

verifies the entries made and the attached map follow the DMRG requirements for station locations before being elevated to the status of Pre-Production or Production.

- 6. The SLOC Request status will be Rejected and returned to the originator with comments if a map is not provided (for new stations or location changes to existing stations), if the request is incomplete, or if any other significant errors are identified.
- 7. When a SLOC Request is processed an electronic copy of the request is returned to the requestor and/or program project manager to be forwarded to the requestor. This acknowledgment includes the unique permanent Station ID to be used when submitting sample results collected at that station.
- 8. For expedited requests (less than 10 business days), please see the following section.

## **Expedited SLOC Requests**

If for any reason it is necessary to create or correct a station faster than the usual turnaround of 10 business days, please refer to the following steps:

- 1. Submit a SLOC as described in the preceding section.
- 2. E-mail the SLOC Coordinator for your program area, requesting expedited processing and explaining the circumstances. Include the SLOC ID.

## **Batch Upload SLOC Requests**

SLOC Request information may be uploaded to SWQMIS in ACSII pipe-delimited text file format instead of using the individual SLOC screens. All fields noted in the table below must be included in the text file whether the fields have values or are left blank. Required fields must contain a valid value. Optional fields may be left blank. Submit one or more request records per text file. Note that the "SWQMIS SLOC Batch Upload" screens also require that the user add a map attachment for each "Create SLOC"; there is a screen for this function.

| Field               | Data Type    | Length | Required/Optional                                                                                                                                                                                  |
|---------------------|--------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station ID          | Number       | 5      | Must be blank for create request. Required for a change request.                                                                                                                                   |
| Long<br>Description | Alphanumeric | 500    | Required for create request. Optional for change request.                                                                                                                                          |
| <b>Temporary ID</b> | Alphanumeric | 10     | Optional for create request. Optional for change request.                                                                                                                                          |
| Requester           | Alphanumeric | 75     | Required.                                                                                                                                                                                          |
| Latitude            | Number       | (+)9   | Required for create request. Optional for change request.<br>Latitude must be a positive value with 6 numbers to the<br>right of the decimal. Positive symbol not required.                        |
| Longitude           | Number       | (-)9   | Required for create request. Optional for change request.<br>Longitude must be a negative value with 6 numbers to<br>the right of the decimal and a negative symbol preceding<br>the degree value. |
| Segment ID          | Alphanumeric | 4-6    | Required for create request. Optional for change request.                                                                                                                                          |

| Field                        | Data Typo                 | Length | Required/Optional                                                                                                                           |
|------------------------------|---------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Submitting                   | <b>Data Type</b><br>Alpha | 2      | Required for create request. Optional for change request.                                                                                   |
| Entity                       | Alpha                     | 2      | Required for create request. Optional for change request.                                                                                   |
| Collecting<br>Entity         | Alpha                     | 2      | Required for create request. Optional for change request.                                                                                   |
| Monitoring<br>Type           | Alpha                     | 2      | Required for create request. Optional for change request.                                                                                   |
| Permit Number                | Alphanumeric              | 25     | Required for create request only if Monitoring Type is<br>RW (Receiving Water Assessment). Optional for change<br>request.                  |
| USGS Gauge<br>ID             | Integer                   | 8-15   | Optional for create request. Optional for change request.                                                                                   |
| Stream Station<br>Type Level | Integer                   | 1      | Required for create request. Optional for change request.                                                                                   |
| Stream Station<br>Type Code  | Alpha                     | 6      | Required for create request. Optional for change request.                                                                                   |
| Horizontal<br>Organization   | Alpha                     | 2      | Required for create request. Required for change request if Lat/Long entered.                                                               |
| Horizontal<br>Reference      | Alpha                     | 10     | Required for create request. Required for change request if Lat/Long entered.                                                               |
| Horizontal<br>Description    | Alpha                     | 500    | Optional for create request. Optional for change request.                                                                                   |
| Horizontal<br>Date           | Text                      | 10     | Required for create request. Required for change request if Lat/Long entered.                                                               |
| Horizontal<br>Datum          | Text                      | 7      | Required for create request. Required for change request if Lat/Long entered.                                                               |
| Horizontal<br>Method         | Text                      | 5      | Required for create request. Required for change request if Lat/Long entered.                                                               |
| Horizontal<br>Accuracy       | Number                    | 4,2    | Required for create request. Required for change request if Lat/Long entered.                                                               |
| Elevation<br>Organization    | Alpha                     | 2      | Optional for create request. Required if an Elevation is<br>provided. Optional for change request. Required if an<br>Elevation is provided. |
| Elevation                    | Number                    | 6      | Optional for create request. Required if an Elevation is<br>provided. Optional for change request. Required if an<br>Elevation is provided. |

| Field                 | Data Type | Length | Required/Optional                                                                                                                           |
|-----------------------|-----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Elevation Date        | Text      | 10     | Optional for create request. Required if an Elevation is<br>provided. Optional for change request. Required if an<br>Elevation is provided. |
| Elevation<br>Datum    | Text      | 7      | Optional for create request. Required if an Elevation is<br>provided. Optional for change request. Required if an<br>Elevation is provided. |
| Elevation<br>Method   | Text      | 5      | Optional for create request. Required if an Elevation is provided. Optional for change request. Required if an Elevation is provided.       |
| Elevation<br>Accuracy | Number    | 4,2    | Optional for create request. Required if an Elevation is<br>provided. Optional for change request. Required if an<br>Elevation is provided. |

Example of create request:

|OKRY CREEK 80 METERS DOWNSTREAM OF US HWY 259 IN MORRIS COUNTY|08049565|tkirklan|32.86734948|-97.03917507|0841C|GS|GS|RT||08049565|1|STREAM|GS|OTHER||04/01/2009|NAD27|UNKN OWN|9999||||||

### **SLOC Maps**

As long as the scale and readability are not negatively impacted, submission of a single map showing multiple sampling sites is encouraged. While in many cases it is not necessary to create individual maps for each SLOC, each "Create SLOC" request submitted via SWQMIS is required to include a map attachment. Requesters using GIS software who have ready-made maps may use the SLOC interface to attach these files. Those without map-generation options outside SWQMIS can use the Map tool in the SLOC General Information screen to capture a map image to use as the attachment.

### **SLOC Request Field Descriptions**

#### The following fields must be completed by the requestor:

#### Station ID

The station ID is a 5-digit code that is automatically generated when a new site is created in SWQMIS and is used when submitting sampling results from that site. A station ID is supplied by the requestor only when requesting changes to an existing station in SWQMIS.

#### Long Description

A detailed description limited to 500 characters is required. The description must be adequate to describe the exact location of the station. The description should not include directions to the station relative to landmarks, but should be concise and include enough specific information to allow someone to locate the station on a map with 25-meter accuracy. The name of the water body must be noted first, followed by relative location such as river meters/kilometers downstream or upstream of a named or numbered road or tributary preferably followed by the distance to a city or named feature on a map. The permit number of the target facility must be

included in the long description for sites that are reporting data for a Receiving Water Assessment (RWA). See the "Helpful Hints on Completing SLOC Requests" section of this chapter for more information about station descriptions.

#### Temporary ID

Any identifier used by the submitter to track a station requested but not yet established should be noted here. If, for example, a SLOC map is marked with ATPWD 23" to illustrate the location of the proposed station, ATPWD 23" should be noted in the temporary ID field. This may also be the unique identifier used by the submitting entity in their own database.

#### Requester

The SWQMIS User ID of the person making the request. If the SWQMIS User ID is used both the Submitter and the Requester will have access to the SLOC Request. If the Requester is not a SWQMIS User, note instead the proper name and Organization (such as "Bruce Ridpath, H-GAC").

#### Latitude/Longitude

Latitude and longitude in standard decimal degree format must be used. The accuracy of the latitude/longitude coordinates is governed by the <u>TCEQ's Operating Policy and Procedure</u><u>8.11.02</u>, Geographic Information Systems Positional Data, which requires accuracy of 25 meters. Latitude and longitude values in decimal degrees must be specified to the nearest 1/10,000th of a degree (four decimal places) to meet this accuracy requirement. Latitude and longitude coordinates are required and preferably determined by trained staff using a Global Positioning System (GPS) unit and appropriate post processing. Another accurate method is the interpolation of one meter resolution DOQQs or using the TCEQ Map Viewers. DOQQs for the entire state of Texas are available from the <u>Texas Natural Resources Information System</u> or via a <u>TCEQ web</u> viewer - see the SLOC Maps section of this chapter for more information on this viewer.

#### Program

Select the TCEQ program area the data reported from this station will be submitted through. The options to select rom are CRP, CWQMN, NPS, SWQM, Standards, and TMDL.

#### Submitting Entity

This is a 2-character code for the organization that will be submitting monitoring data from this location to the TCEQ. See <u>Chapter 4</u> for a list of valid codes.

#### Collecting Entity

This is a 2-character code for the organization that will be collecting monitoring data at this location. See <u>Chapter 4</u> for a list of valid codes.

#### Monitoring Type

This is a 2- or 4-character code for the type of monitoring that will be performed at this location. See <u>Chapter 13</u> for a list of valid codes.

#### Permit Number

If the station is near or will be used to monitor discharge from a permitted facility, report the permit number. Do not use the number symbol (#); simply list the alphanumeric value (such as "123-7558-A").

#### Segment ID

A Segment ID is a required 4, 5, or 6 character segment code determined from the Segment

Descriptions list as found in the <u>Texas Surface Water Quality Standards (TSWQS)</u>, <u>Texas</u> Administrative Code (TAC), <u>Title 30</u>, <u>Part 1</u>, <u>Chapter 307</u>, <u>Appendix C</u>.

#### USGS Gauge ID

Submit the USGS gauge station ID for stations at the same location as a USGS gauge station. This number is obtained by reviewing USGS topographic maps or from the <u>USGS site inventory</u>.

#### Stream Station Level

Note the Level (1 through 5) of the Stream Station Type Code used. See <u>Appendix B</u> for information on Stream Stations Levels. Only Levels 1 through 2 are required unless samples are collected at the pipe, in which case all 5 levels become required.

#### Stream Station Code

Stations must be identified using the coding scheme listed in Appendix B. For example, a station that is considered to be within a mixing zone must be coded with the Level 2 value "NONAMB". The mixing zone is defined in the <u>SWQM Procedures Manual</u>, <u>Volume 1</u> (1).

#### Horizontal Organization

The organization that generated the horizontal coordinates (latitude and longitude) for this station. Often, this is the same as either the Submitting Entity or Collecting Entity for the stations. Any Submitting or Collecting entity code listed in <u>Chapter 4</u> may be used for this field.

#### Horizontal Reference

A code that specifically describes the precise location of the coordinate with reference to the facility, if applicable. For many ambient stations not associated with any facility, the code OTHER applies. Valid values are listed in <u>Appendix D</u>.

#### Horizontal Description

Additional information about the site location, such as driving directions or specific references for locating the site within a facility.

#### Horizontal Date

The date on which the horizontal coordinates (latitude and longitude) were generated.

#### Horizontal Datum

The horizontal reference datum used when collecting the horizontal coordinates. Valid values are listed in <u>Appendix D</u>. NAD83 is the most widely used since it is the datum used for DOQQ's and other popular mapping tools.

#### Horizontal Method

A code that defines the method used to generate the horizontal coordinates. Valid values are listed in <u>Appendix D</u>. The method code may also allow determination of the Horizontal Accuracy value as well.

#### Horizontal Accuracy

Assessment of the horizontal accuracy of the reported latitude/longitude coordinates expressed in meters. Accuracy will depend on the method of collection, procedures and equipment used, and/or the results of any statistically valid test of similar points. For example, coordinates obtained using a 1-meter DOQQ (including Google Maps) have an assumed accuracy of 5 meters, while those determined using a 1:24,000 scale topographic map will have an assumed accuracy of 12 meters. A value of 9999 should be entered if accuracy cannot be determined.

The following fields may optionally be completed by the requestor:

## Note that if a value is reported for any of these fields, values for all six fields are then required.

#### Elevation Organization

The organization that generated the horizontal coordinates (latitude and longitude) for this station. Often, this is the same as either the Submitting Entity or Collecting Entity for the stations. Any Submitting or Collecting entity code listed in Chapter 4 may be used for this field.

#### Elevation

A value expressing the measured height above (or depression below) mean sea level, in meters.

#### Elevation Date

The date on which the elevation value was generated.

#### Elevation Datum

The vertical reference datum used when collecting the elevation value. Valid values are listed in <u>Appendix D</u>.

#### Elevation Method

A code that defines the method used to generate the elevation value. Valid values are listed in <u>Appendix D</u>.

#### **Elevation Accuracy**

Assessment of the accuracy of the reported elevation expressed in meters. Accuracy will depend on the method of collection, procedures and equipment used, and/or the results of any statistically valid test of similar points. A value of 9999 should be entered if accuracy cannot be determined.

#### The following fields are maintained by DM&A or automatically stored by SWQMIS:

#### Ambient Indicator

This Y/N code is an indicator of whether the site is considered to be representative of ambient conditions in the water body.

#### Authorizer ID

SWQMIS captures the User ID of the data manager who promoted the station record to production status.

#### Submitter ID

SWQMIS captures the User ID of the individual submitting a SLOC.

#### Established Date

The date a station was originally given production status in SWQMIS.

#### TCEQ Region

The TCEQ administrative Region in which the station falls, automatically assigned based on the station coordinates.

#### Basin

The SWQM-defined river basin in which the station falls, automatically assigned based on the associated Segment ID.

#### **On-Segment Indicator**

This binary indicator (yes/no) denotes whether the station falls directly within the bounds of a TCEQ classified or unclassified segment. If no, the station falls on a water body flowing into the associated Segment ID.

#### NHD Reach Code

The 14-digit USGS National Hydrography Dataset code for the water body segment at the station location.

#### County

The name of the Texas county in which the station falls, automatically assigned based on the station coordinates. For out-of-state stations or stations out in the Gulf of Mexico, this is the closest Texas county.

#### Level III Ecoregion

The EPA Level III Ecoregion designation at the station location, automatically assigned based on the station coordinates. Ecoregions maps based on EPA data are included in Appendix A.

#### Level III Ecoregion Reference Site Indicator

This binary indicator (yes/no) denotes whether the station was established as a reference site for the Level III Ecoregion – a minimally impacted location most representative of the naturally occurring conditions within that Ecoregion.

#### Level IV Ecoregion

The EPA Level IV Ecoregion designation at the station location, automatically assigned based on the station coordinates. Ecoregions maps based on EPA data are included in Appendix A.

#### Level IV Ecoregion Reference Site Indicator

This binary indicator (yes/no) denotes whether the station was established as a reference site for the Level IV Ecoregion – a minimally impacted location most representative of the naturally occurring conditions within that Ecoregion.

#### STORET Station Type Primary

Analogous to the Stream Station Type Code (Level 1) also used to describe the station, this is a specific EPA code used in the national STORET database.

#### STORET Station Type Secondary

Analogous to the Stream Station Type Code (Levels 3-5) also used to describe the station, this is a specific EPA code used in the national STORET database.

#### General Comments

Any comments about the station, entered either by the Submitter or Authorizer.

#### Status

A station may exist in SWQMIS with one or more status designations at any given time. Stations available for data submission and reporting have a status of Production. When a SLOC is accepted for review by a data manager, it has a status of Pre-Production and is not yet available for use. SWQMIS station status options are Saved, Requested, Rejected, Pre-Production, and

#### Production.

#### Inundated Stations

Stations inundated by reservoir filling are given a status of Retired. The phrase "now inundated use ######" is added to the original station description to show the new reservoir station ID. The station is listed as off-segment if it is located above the normal pool elevation as identified in the <u>TSWQS Appendix C, Segment Descriptions</u>. If monitoring is ongoing at the same location (now in a new reservoir segment), a new station is created for reporting the post-inundation data.

#### **Duplicate Stations**

Stations may have been created at locations where a station already existed, through errors in description or latitude/longitude. Where these co-located or "duplicate" stations are discovered, some simple analysis is performed to determine the appropriate action. If no data has been reported to SWQMIS at either station, the lowest numeric station ID is retained for reporting. The other station is given a status of Retired in SWQMIS and is no longer available for reporting data. If one station has data and the other does not, the station with no data is retired and annotated as above. If both stations have data, interested parties are consulted to choose an acceptable course of action. There are also cases where, for legitimate monitoring purposes, stations are created in close proximity. Documentation will be maintained regarding the necessity of the seemingly duplicate stations in these cases.

#### Station Verbal Descriptions

#### Helpful Hints on Completing SLOC Requests

The description must contain concise, specific information that allows the station to be located within a 25 meter radius on any map or in the field. The description must be adequate for locating the station on USGS topographic or other maps that meet requirements outlined in the SLOC Maps section of this chapter. Useful information may include a nearby town, for example, "TRINITY RIVER 37 METERS UPSTREAM OF US 57 NEAR COLUMBUS" or "... IN COLUMBUS". If a station is not located near a city or town, it must be referenced to some other named, mapped feature. For stations on unclassified tributaries, write the most characteristic identifier first, such as "CAGONA CREEK AT US 29" or "CLEAR CREEK 2.57 KILOMETERS DOWNSTREAM OF SH 439 NEAR SISTERDALE". Descriptions are limited to 500 characters.

Do:

- Use the metric system to convey measurements.
- Report any measurement over 1000 meters in kilometers.
- CAPITALIZE all station descriptions.
- Use "AT" rather than "@".
- Spell out "STREET", "AVENUE", "RAILROAD", "ROAD", and similar words whenever possible; use common abbreviations such as "ST", "AVE", "RR", and "RD" only when necessary to save space.
- Use the term "UNNAMED ROAD" if the name of a road crossing is not obtainable. Unnamed roads must be referenced to an upstream or downstream named road. If no road is available to reference, a named tributary may be used.
- Use "WWTP" for Wastewater Treatment Plant rather than "STP (for Sewage Treatment Plant)."
- Use "UPSTREAM" and "DOWNSTREAM" rather than "ABOVE" and "BELOW".
- Use the abbreviated format indicated in the following examples for numbered roads: HAYS CR 450 IH LOOP 610

FM 2175 SH LOOP 329 US 377 SH SPUR 160 IH 45 RR 620

• Use the format indicated in the following examples for roads with more than one name, separating the names with a slash:

TELEPHONE ROAD/SH 35 IH 45/US 75 SH 95/SH LOOP 230 PITTS STREET/NORTH MAIN STREET

• Use the format indicated in the following example for different road names on either side of a bridge, separating the names with a dash:

WAUGH DRIVE-YALE STREET

• For County Roads (CR), include the full name of the county road in the description:

WILLIAMSOM CR 258 CALDWELL CR 100

- Use "IMMEDIATELY" rather than "JUST" when distances are unknown, but less than 25 meters:
  - ... IMMEDIATELY UPSTREAM OF MAPLE STREET.
- Provide exact distances upstream or downstream in meters rather than feet when the distance is less than 1.00 Kilometer (such as 28 meters). Indicate the unit of measurement (meters, kilometers).
- Provide exact distances upstream or downstream in kilometers rounded to up to the nearest hundredth when the distance is greater than or equal to 1000 meters (1.07 kilometers).
- On reservoirs, provide distance from the center of a dam, a road crossing, or other named, mapped feature.
- Whenever possible, use only the four cardinal directions in descriptions. For example, use "100 METERS NORTH AND 200 METERS WEST FROM THE INTERSECTION OF IH 35 AND US 290" rather than "225 METERS NORTHWEST OF THE IH 35 US 290 INTERSECTION". This triangulated reference format is more precise.
- Use "UNNAMED TRIBUTARY OF" rather than "UNNAMED CREEK". Follow this with the name of the water body, "UNNAMED TRIBUTARY OF CANEY CREEK AT US 27". Since there may be more than one unnamed tributary of Caney Creek that crosses US 27, further description may be necessary. For example, "UNNAMED TRIBUTARY OF CANEY CREEK AT US 27 CONFLUENT WITH CANEY CREEK 2.57 KILOMETERS UPSTREAM OF IH 35", or "UNNAMED TRIBUTARY OF CANEY CREEK AT US 27 SOUTH OF ARAPAHO PARK".
- Unnamed tributaries with a waste water treatment plant (WWTP) discharge may be named for the treatment plant as in "CITY OF COMMERCE WWTP DITCH 53 METERS UPSTREAM OF DISCHARGE TO APPLE CREEK".
- WWTP effluent descriptions must identify the permit such as "CITY OF COLUMBUS WWTP PERMIT WQ 1857-02". Do not include a "#" sign in the permit number.
- Sometimes there may be no road or other feature on the map that can be used to describe a stream station. When there are no roads, the distance upstream or downstream from a confluence can be used as the reference location. In describing tributary locations using the mainstream confluence as the reference location, use the format "BARTON CREEK 2.53 KILOMETERS UPSTREAM OF ITS CONFLUENCE WITH THE COLORADORIVER".
- When describing mainstream locations using a tributary as the reference location, use the format "COLORADO RIVER 4.82 KILOMETERS UPSTREAM OF SANDY CREEK".

#### Don't:

- Do not use station labels (letters and number, for example, "AA" or "D2") in long descriptions. If needed, alternate station names may be used in the Temporary ID field.
- Do not use the terms "CROSSING", "BRIDGE", or "HIGHWAY" unless it is an official, mappable part of the place or roadway name.
- Never use "AT" when the reference location used is a stream or WWTP outfall unless the station is specifically for sampling effluent (Stream Station Type Level 1 = PIPE). For monitoring the water body near the outfall, use "IMMEDIATELY UPSTREAM OF" or "IMMEDIATELY DOWNSTREAM OF"; for example, "ARROYO COLORADO IMMEDIATELY UPSTREAM OF THE DEWEYVILLE WWTP OUTFALL". Remember to report the permit number when monitoring adjacent to any permitted outflow.
- Do not use the pound sign (#), the ampersand symbol (&), parentheses, or any other special characters. Any punctuation used (commas, apostrophes, periods other than in numbers) may be removed from the verbal description by DM&A for consistency of format.

## **Monitoring Station Inventory Report**

The Station Inventory Report generates a list of monitoring stations in the SWQMIS database. The Station Inventory Report can be used to verify that details about a monitoring station location are correct, as it includes all of the metadata elements listed in the SLOC Request Field Definitions section above. Users of SWQMIS should review the Station Inventory Report and/or use the Map feature prior to submitting a SLOC to determine whether a station that meets their needs already exists at or near their intended monitoring site. For non-SWQMIS users, a <u>list of</u> <u>stations for each river basin</u> can be viewed online.

## Chapter 4 – Submitting Entity and Collecting Entity Codes

Submitting Entity and Collecting Entity Codes are assigned by DM&A at the request of TCEQ Programs— CRP, SWQM, TMDL, Standards, NPS. These codes are used to identify entities responsible for submitting data and conducting sampling. The Submitting Entity is a 2-character code that identifies the entity responsible for submitting the data to the TCEQ. The Collecting Entity is a 2-character code that identifies the entity responsible for conducting the actual sampling.

Request a new entity code by sending a Submitting Entity/Collecting Entity/Monitoring Type/Tag Prefix Request and Review Checklist to DM&A.

Existing codes are listed on the following pages.

## **Submitting Entity Codes**

The entity responsible for submitting the data to the TCEQ.

| AB | City of Abilene                                                       |
|----|-----------------------------------------------------------------------|
| AC | Texas A&M College Station, Department of Wildlife & Fisheries Science |
| AD | Texas AgriLife Research and Extension - Dallas                        |
| AE | Texas A&M AgriLife Extension - Clear Lake                             |
| AG | Texas A&M University Galveston Seafood<br>Safety Lab                  |
| AK | Texas A&M University - Kingsville                                     |
| AM | Texas A&M University – Corpus Christi                                 |
| AN | Angelina-Neches River Authority                                       |
| AP | Alan Plummer Associates, Inc.                                         |
| AQ | Edwards Aquifer Authority                                             |
| AR | City of Arlington                                                     |
| AT | Texas A&M AgriLife Research - Stephenville                            |
| AU | City of Austin                                                        |
| BA | Bandera County River Authority and Groundwater District               |
| BC | City of Boerne                                                        |
| BE | City of Beeville                                                      |
| BR | Brazos River Authority                                                |
| BS | Barton Springs – Edwards Aquifer Conservation District                |
| BU | Baylor University                                                     |
| BY | Bayou Preservation Association                                        |
| CB | Conrad Blucher Institute for Surveying and Science                    |
| CC | City of Corpus Christi                                                |
|    |                                                                       |

| CE | Corps of Engineers                              |
|----|-------------------------------------------------|
| CL | Caddo Lake Institute                            |
| CP | Coastal Bend Bays and Estuaries, Inc.           |
| CR | Canadian River Municipal Water Authority        |
| СҮ | Cypress Basin                                   |
| DF | DFW Airport                                     |
| EA | EA Engineering, Science, & Technology, Inc.     |
| EI | Espey Consultants, Inc.                         |
| GA | City of Galveston                               |
| GB | Guadalupe-Blanco River Authority                |
| GS | United States Geological Survey                 |
| HD | Texas Department of State Health Services       |
| HG | Houston-Galveston Area Council                  |
| НО | City of Houston                                 |
| IB | International Boundary & Water Commission       |
| IR | City of Irving                                  |
| JC | Jefferson County Environmental Control District |
| JM | J.M. Miertschin & Associates, Inc.              |
| KI | City of Killeen                                 |
| LC | Lower Colorado River Authority                  |
| LD | LEADS                                           |
| LK | City of Lockhart                                |
| LN | Lavaca-Navidad River Authority                  |
| LV | Lower Neches Valley Authority                   |
| MC | Midland College                                 |
| NE | Naismith Engineering, Inc.                      |
| NR | Nueces River Authority                          |
| NT | Northeast Texas Municipal Water District        |
| PA | Patrick Bayou TMDL Lead Organization            |
| PB | PBS&J                                           |
| PE | Parsons Engineering Science                     |
| PT | University of Texas Pan-American                |
| PW | Texas Parks and Wildlife Department             |
| RC | Texas Railroad Commission                       |
| RI | City of Richardson                              |
| RR | Red River Authority                             |
| RU | Rice University                                 |

| SA | San Antonio River Authority                                                |
|----|----------------------------------------------------------------------------|
| SB | Senate Bill 835                                                            |
| SJ | San Jacinto River Authority                                                |
| SN | San Antonio Metropolitan Health Department                                 |
| SR | Sabine River Authority                                                     |
| SU | Sulphur River Basin Authority                                              |
| ТА | Texas Institute for Applied Environmental Research                         |
| TF | Texas Research Institute for Environmental Studies - SHSU                  |
| TH | Tetra Tech, Inc.                                                           |
| TI | The Meadows Center for Water and the Environment at Texas State University |
| TP | Texas Municipal Power Authority                                            |
| TR | Trinity River Authority                                                    |
| TS | Texas Engineering Experimental Station -SERF                               |
| TT | Texas State Technological College                                          |
| TW | Texas Watch                                                                |
| TX | Texas State Soil and Water Conservation Board                              |
| UA | University of Texas at Austin                                              |
| UB | University of Texas Brownsville                                            |
| UC | Upper Colorado River Authority                                             |
| UG | Upper Guadalupe River Authority                                            |
| UH | University of Houston                                                      |
| UI | University of Houston Clear Lake<br>Environmental Institute of Houston     |
| UM | University of Texas Marine Science Institute                               |
| UN | Upper Neches River Authority                                               |
| UR | URS Corporation                                                            |
| US | University of Texas at San Antonio                                         |
| WA | City of Waco                                                               |
| WC | Texas Commission on Environmental Quality                                  |
| WM | Water Monitoring Solutions, Inc.                                           |
| WS | Texas A&M University Corpus Christi Center<br>for Water Supply Studies     |
| WR | Texas Water Resources Institute                                            |
| XX | Default Code for Unknown Sources                                           |
|    |                                                                            |

## **Collecting Entity Codes**

The entity responsible for sample collection.

| AB | City of Abilene                                                       |
|----|-----------------------------------------------------------------------|
| AC | Texas A&M College Station, Department of Wildlife & Fisheries Science |
| AD | Texas AgriLife Research and Extension - Dallas                        |
| AE | Texas A&M Agrilife Extension – Clear Lake                             |
| AG | Texas A&M University Galveston Seafood<br>Safety Lab                  |
| AK | Texas A&M University - Kingsville                                     |
| AL | Al Amistad National Park Service                                      |
| AM | Texas A&M University – Corpus Christi                                 |
| AN | Angelina-Neches River Authority                                       |
| AO | AECOM                                                                 |
| AP | Alan Plummer Associates, Inc.                                         |
| AQ | Edwards Aquifer Authority                                             |
| AR | City of Arlington                                                     |
| AS | Water Quality Assessment Team                                         |
| AU | City of Austin                                                        |
| BA | Bandera County River Authority and Groundwater District               |
| BB | Big Bend National Park Service                                        |
| BC | City of Boerne                                                        |
| BE | City of Beeville                                                      |
| BN | City of Brownsville                                                   |
| BO | Brownsville Public Utilities Board                                    |
| BP | Big Thicket Preserve                                                  |
| BR | Brazos River Authority                                                |
| BS | Barton Springs – Edwards Aquifer Conservation District                |
| BT | Border Environmental Assessment                                       |
| BU | Baylor University                                                     |
| CA | City of Corsicana                                                     |
| СВ | Conrad Blucher Institute for Surveying and Science                    |
| CC | City of Corpus Christi                                                |
| CE | Corps of Engineers                                                    |
| CL | Caddo Lake Institute                                                  |
| СО | TCEQ Central Office                                                   |
| СР | Coastal Bend Bays and Estuaries, Inc.                                 |
| CR | Canadian River Municipal Water Authority                              |

| CW | Colorado River Municipal Water District                  |
|----|----------------------------------------------------------|
| CY | Cypress Basin                                            |
| DA | City of Dallas                                           |
| DF | DFW Airport                                              |
| DM | TCEQ SWQM Data Management                                |
| DR | City of Del Rio                                          |
| DT | City of Dallas Trinity Watershed Management              |
| EA | EA Engineering, Science, & Technology, Inc.              |
| EC | Edwards Aquifer Research & Data Center                   |
| EI | Espey Consultants, Inc.                                  |
| EK | Donald Macnair                                           |
| EM | Ecological Communications Corporation -<br>ECOMM         |
| EP | El Paso Community College                                |
| FC | Franklin County Water District                           |
| FO | TCEQ Regional Office                                     |
| FS | Town Lake Fish Study                                     |
| FW | City of Fort Worth                                       |
| GA | City of Galveston                                        |
| GB | Guadalupe-Blanco River Authority                         |
| GC | Galveston County Health District                         |
| GF | Galveston Bay Foundation                                 |
| GP | City of Grand Prairie                                    |
| GS | United States Geological Survey                          |
| GW | Groundwater Protection Team                              |
| HC | Harris County Pollution Control                          |
| HD | Texas Department of State Health Services                |
| HG | Houston-Galveston Area Council                           |
| НН | Houston Health & Human Services                          |
| HI | Hicks & Company, Inc.                                    |
| НО | City of Houston                                          |
| HP | City of Houston Department of Public Works & Engineering |
| HR | HDR Engineering Co.                                      |
| HW | Houston Water Quality Control                            |
| HZ | Hays County                                              |
| IB | International Boundary & Water Commission                |
| IR | City of Irving                                           |

| JM | J.M. Miertschin & Associates, Inc.                                             |
|----|--------------------------------------------------------------------------------|
| KG | City of Kilgore                                                                |
| KI | City of Killeen                                                                |
| LA | City of Laredo Health Department                                               |
| LB | Texas Watch Little Bay Sentinels                                               |
| LC | Lower Colorado River Authority                                                 |
| LD | LEADS                                                                          |
| LE | City of Laredo Environmental Engineering Division                              |
| LK | City of Lockhart                                                               |
| LL | Trinity River Authority Lake Livingston Project                                |
| LN | Lavaca-Navidad River Authority                                                 |
| LR | Texas AgriLife Research - Vernon                                               |
| LV | Lower Neches Valley Authority                                                  |
| LW | City of Longview                                                               |
| MB | Matagorda Bay Study                                                            |
| MC | Midland College                                                                |
| MF | Tetra Tech/MFG, Inc.                                                           |
| MG | Texas A&M University Galveston Lab of Oceanographic and Environmental Research |
| NE | Naismith Engineering, Inc.                                                     |
| NM | North Texas Municipal Water District                                           |
| NR | Nueces River Authority                                                         |
| NT | Northeast Texas Municipal Water District                                       |
| NW | North Water District Laboratory Services, Inc.                                 |
| PB | PBS&J                                                                          |
| PE | Parsons Engineering Science                                                    |
| PL | City of Pearland                                                               |
| PP | Paul Price Associates                                                          |
| PT | University of Texas Pan-American                                               |
| PW | Texas Parks and Wildlife Department                                            |
| RC | Texas Railroad Commission                                                      |
| RI | City of Richardson                                                             |
| RN | Rio Grande International Study Center                                          |
| RR | Red River Authority                                                            |
| RU | Rice University                                                                |
| SA | San Antonio River Authority                                                    |
| SC | Friends of Sulphur Creek                                                       |

| SF | Stephen F. Austin State University                                         |
|----|----------------------------------------------------------------------------|
| SG | City of San Angelo                                                         |
| SH | City of Sherman                                                            |
| SI | Standards Implementation Team                                              |
| SJ | San Jacinto River Authority                                                |
| SL | Sul Ross University                                                        |
| SM | San Marcos River Rangers                                                   |
| SN | San Antonio Metropolitan Health Department                                 |
| SP | Sabal Palms Audubon Center and Sanctuary                                   |
| SQ | SWQM Water Quality Monitoring Team                                         |
| SR | Sabine River Authority                                                     |
| ST | Water Quality Standards Team                                               |
| SU | Sulphur River Basin Authority                                              |
| SV | Salado Creek Volunteer Monitors                                            |
| SW | SWCA, Inc.                                                                 |
| ТА | Texas Institute for Applied Environmental Research                         |
| TC | Texarkana College                                                          |
| TD | Tarrant Regional Water District                                            |
| TE | Texas Eastman                                                              |
| TF | Texas Research Institute for Environmental Studies - SHSU                  |
| TH | Tetra Tech, Inc.                                                           |
| TI | The Meadows Center for Water and the Environment at Texas State University |
| ТК | Texarkana Water Utilities                                                  |
| TL | Texas A&M University Trace Element Research Laboratory                     |
| TM | Total Maximum Daily Load Team                                              |
| TQ | TRC Environmental Consulting                                               |
| TR | Trinity River Authority                                                    |
| TS | Texas Engineering Experimental Station -SERF                               |
| ТТ | Texas State Technological College                                          |
| TU | Texas Tech University Llano River Field Station                            |
| TW | Texas Watch                                                                |
| TX | Texas State Soil and Water Conservation Board                              |
| TY | City of Tyler                                                              |
| UA | University of Texas at Austin                                              |

| UB | University of Texas Brownsville                                        |
|----|------------------------------------------------------------------------|
| UC | Upper Colorado River Authority                                         |
| UE | University of Texas at El Paso Department of<br>Biological Sciences    |
| UF | US Fish and Wildlife Service                                           |
| UG | Upper Guadalupe River Authority                                        |
| UH | University of Houston                                                  |
| UI | University of Houston Clear Lake<br>Environmental Institute of Houston |
| UM | University of Texas Marine Science Institute                           |
| UP | Upper Pecos Soil and Water Conservation District                       |
| UR | URS Corporation                                                        |
| US | University of Texas at San Antonio                                     |
| UT | University of North Texas                                              |
| WA | City of Waco                                                           |
| WL | Wendy Lopez and Associates                                             |
| WM | Water Monitoring Solutions, Inc.                                       |
| WR | Texas Water Resources Institute                                        |
| WS | Texas A&M University Corpus Christi Center<br>for Water Supply Studies |
| WV | Wimberley Valley Watershed Association                                 |
| WX | City of Waxahachie                                                     |
| XX | Default Code for Unknown Sources                                       |
| ZP | Zapata County                                                          |
| 01 | Boy Scouts of America Sam Houston Chapter                              |
| 43 | Colorado River Watch                                                   |

## <u>Chapter 5 – Tag Prefixes</u>

The Tag Prefix is the first one or two digits of the Tag ID and is used to identify the entity reporting data to the TCEQ. SWQMIS is capable of identifying a sample with a unique Tag ID of up to 9 characters. If it is necessary for a dataset to use more than 7-digit Tag IDs, please contact DM&A to get approval. To request a Tag Prefix from DM&A, submit the Submitting Entity/Collecting Entity/Monitoring Type Code/Tag Prefix Request and Review Checklist. The existing Tag Prefixes for submitting data are listed Table 5.1.

| Tag Prefix | Agency                                                                 | Associated<br>Submitting<br>Entity Code |  |
|------------|------------------------------------------------------------------------|-----------------------------------------|--|
| А          | TEXAS A&M UNIVERSITY                                                   | AM                                      |  |
| AC         | TEXAS A&M COLLEGE STATION, DEPT. OF WILDLIFE<br>AND FISHERIES SCIENCES | AC                                      |  |
| AD         | TEXAS AGRILIFE RESEARCH AND EXTENSION - DALLAS                         | AD                                      |  |
| AE         | TEXAS AGRILIFE EXTENSION – CLEAR LAKE                                  | AE                                      |  |
| AG         | TAMUG SEAFOOD SAFETY LAB                                               | AG                                      |  |
| AK         | TEXAS A&M UNIVERSITY KINGSVILLE                                        | AK                                      |  |
| AP         | ALAN PLUMMER ASSOCIATES, INC.                                          | AP                                      |  |
| AQ         | EDWARDS AQUIFER AUTHORITY                                              | AQ                                      |  |
| AT         | TEXAS A&M AGRILIFE RESEARCH - STEPHENVILLE                             | AT                                      |  |
| AU         | CITY OF AUSTIN                                                         | AU                                      |  |
| В          | IBWC                                                                   | IB                                      |  |
| BA         | IBWC AMISTAD OFFICE                                                    | IB                                      |  |
| BC         | CITY OF BOERNE                                                         | BC                                      |  |
| BD         | IBWC AMERICAN DAM                                                      | IB                                      |  |
| BF         | IBWC FALCON OFFICE                                                     | IB                                      |  |
| BL         | IBWC LAREDO OFFICE                                                     | IB                                      |  |
| BM         | IBWC MERCEDES OFFICE                                                   | IB                                      |  |
| BP         | IBWC PRESIDIO OFFICE                                                   | IB                                      |  |

 Table 5.1. Tag prefixes.

**Table 5.1**. Tag prefixes.

| Tag Prefix | Agency                                                    | Associated<br>Submitting<br>Entity Code |
|------------|-----------------------------------------------------------|-----------------------------------------|
| BR         | BRAZOS RIVER AUTHORITY                                    | BR                                      |
| BS         | BARTON SPRINGS – EDWARDS AQUIFER<br>CONSERVATION DISTRICT | BS                                      |
| BU         | BAYLOR UNIVERSITY                                         | BU                                      |
| BY         | BAYOU PRESERVATION ASSOCIATION                            | BY                                      |
| С          | CRMWA CHEMICAL                                            | CR                                      |
| СВ         | CONRAD BLUCHER INSTITUTE FOR SURVEYING & SCIENCE          | СВ                                      |
| CL         | CADDO LAKE INSTITUTE                                      | CL                                      |
| СҮ         | NORTHEAST TEXAS MUNICIPAL WATER DISTRICT                  | NT                                      |
| D          | CORPS OF ENGINEERS                                        | CE                                      |
| EA         | EA ENGINEERING                                            | EA                                      |
| EC         | ESPEY CONSULTANTS, INC.                                   | EI                                      |
| GB         | GUADALUPE-BLANCO RIVER AUTHORITY                          | GB                                      |
| Н          | TEXAS DEPARTMENT OF HEALTH                                | HD                                      |
| HP         | CITY OF HOUSTON                                           | НО                                      |
| Ι          | HOUSTON-GALVESTON AREA COUNCIL                            | HG                                      |
| J          | SABINE RIVER AUTHORITY                                    | SR                                      |
| JM         | JAMES MIERTSCHIN AND ASSOCIATES                           | JM                                      |
| K          | ANGELINA-NECHES RIVER AUTHORITY                           | AN                                      |
| KI         | CITY OF KILLEEN                                           | KI                                      |
| L          | LOWER COLORADO RIVER AUTHORITY                            | LC                                      |
| LK         | CITY OF LOCKHART                                          | LK                                      |
| LN         | LAVACA NAVIDAD RIVER AUTHORITY                            | LN                                      |

**Table 5.1**. Tag prefixes.

| Tag Prefix | Agency                                                                                                | Associated<br>Submitting<br>Entity Code |
|------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------|
| М          | LOWER NECHES VALLEY AUTHORITY                                                                         | LV                                      |
| N          | UPPER NECHES RIVER MUNICIPAL WATER AUTHORITY                                                          | UN                                      |
| NE         | NAISMITH ENGINEERING, INC.                                                                            | NE                                      |
| 0          | NUECES RIVER AUTHORITY/NUECES COASTAL                                                                 | NR                                      |
| Р          | TEXAS PARKS & WILDLIFE                                                                                | PW                                      |
| РА         | PATRICK BAYOU TMDL LEAD ORGANIZATION                                                                  | PA                                      |
| РВ         | PBS&J                                                                                                 | РВ                                      |
| PE         | PARSONS ENGINEERING SCIENCE                                                                           | PE                                      |
| PF         | TCEQ PROFILE TAG IDs BEFORE TRACS                                                                     | WC                                      |
| PR         | TCEQ PROFILE TAG IDs AFTER TRACS                                                                      | WC                                      |
| Q          | TCEQ QUALITY ASSESSMENT (Central Office field)                                                        | WC                                      |
| R          | TCEQ REGIONAL FIELD DATA                                                                              | WC                                      |
| RC         | TEXAS RAILROAD COMMISSION                                                                             | RC                                      |
| RR         | RED RIVER AUTHORITY                                                                                   | RR                                      |
| SA         | SAN ANTONIO RIVER AUTHORITY                                                                           | SA                                      |
| Т          | THE MEADOWS CENTER FOR WATER AND THE ENVIRONMENT AT TEXAS STATE UNIVERSITY                            | TW                                      |
| ТА         | TEXAS INSTITUTE FOR APPLIED ENVIRONMENTAL RESEARCH                                                    | ТА                                      |
| TG         | TRINITY RIVER AUTHORITY/GRAPEVINE (not active)                                                        | TR                                      |
| TH         | TETRA TECH, INC.                                                                                      | ТН                                      |
| TI         | THE MEADOWS CENTER FORMERLY KNOWN AS THE<br>TEXAS RIVER SYSTEMS INSTITUTE – TEXAS STATE<br>UNIVERSITY | TI                                      |
| TR         | TRINITY RIVER AUTHORITY                                                                               | TR                                      |

**Table 5.1**. Tag prefixes.

| Tag Prefix | Agency                                                                         | Associated<br>Submitting<br>Entity Code |
|------------|--------------------------------------------------------------------------------|-----------------------------------------|
| TS         | TEXAS ENGINEERING EXPERIMENTAL STATION (SERF)                                  | TS                                      |
| TT         | TEXAS STATE TECHNOLOGICAL COLLEGE                                              | TT                                      |
| TX         | TEXAS STATE SOIL AND WATER CONSERVATION BOARD                                  | ТХ                                      |
| U          | UNITED STATES GEOLOGICAL SURVEY (USGS)                                         | GS                                      |
| UA         | UNIVERSITY OF TEXAS AT AUSTIN                                                  | UA                                      |
| UC         | UPPER COLORADO RIVER AUTHORITY                                                 | UC                                      |
| UG         | UPPER GUADALUPE RIVER AUTHORITY                                                | UG                                      |
| UH         | UNIVERSITY OF HOUSTON                                                          | UH                                      |
| UI         | UNIVERSITY OF HOUSTON CLEAR LAKE –<br>ENVIRONMENTAL INSTITUTE OF HOUSTON (EIH) | UI                                      |
| UM         | UNIVERSITY OF TEXAS MARINE SCIENCE INSTITUTE                                   | UM                                      |
| UR         | URS CORPORATION                                                                | UR                                      |
| US         | UNIVERSITY OF TEXAS AT SAN ANTONIO                                             | US                                      |
| W          | SULPHUR RIVER AUTHORITY                                                        | SU                                      |
| WR         | TEXAS WATER RESOURCES INSTITUTE                                                | WR                                      |
| WS         | TEXAS A&M UNIVERSITY CORPUS CHRISTI CENTER FOR<br>WATER SUPPLY STUDIES         | WS                                      |
| Х          | TCEQ WHITE DATA FORMS (HISTORICAL)                                             | WC                                      |
| Z          | TCEQ OLD DATA                                                                  | WC                                      |

## <u>Chapter 6 – Commonly Used Parameter Codes</u>

The most common parameter codes reported for various types of sampling are provided in this chapter. Due to the evolving nature of SWQM, the parameter codes listed are subject to change. Any entity collecting or submitting data to the TCEQ must verify they are using the most current <u>TCEQ parameter</u> <u>collecting codes</u>.

## Field Data

Refer to the <u>SWQM Procedures Manual</u>, <u>Volume I: Physical and Chemical Monitoring Methods for</u> <u>Water, Sediment, and Tissue (most current version), Chapter 3</u>, for the sampling procedures specific to field and flow data.

| FIELD                                                                             | Parameter Code |
|-----------------------------------------------------------------------------------|----------------|
| WATER TEMPERATURE (°C)                                                            | 00010          |
| PH (standard units)                                                               | 00400          |
| DISSOLVED OXYGEN (mg/L)                                                           | 00300          |
| SPECIFIC CONDUCTANCE (µmhos/cm @ 25 °C)                                           | 00094          |
| TRANSPARENCY, SECCHI DISC (meters) **Important parameter<br>for reservoir ranking | 00078          |
| DAYS SINCE PRECIPITATION EVENT (days)                                             | 72053          |
| SALINITY - ppt (tidal waters only)                                                | 00480          |
| CHLORINE, TOTAL RESIDUAL (mg/L) (downstream of WWTPs)                             | 50060          |
| FLOW SEVERITY:1=No Flow, 2=Low, 3=Normal, 4=Flood, 5=High, 6=Dry                  | 01351          |
| INSTANTANEOUS STREAM FLOW (cfs)                                                   | 00061          |
| FLOW METHOD 1=Flow Gage, 2=Electronic, 3=Mechanical, 4=Weir/Flume, 5=Doppler      | 89835          |
| RESERVOIR STAGE (feet above mean sea level)                                       | 00052          |
| RESERVOIR PERCENT FULL (%)                                                        | 00053          |
| EVIDENCE OF PRIMARY CONTACT RECREATION (1 = OBSERVED, 0 = NOT OBSERVED)           | 89979          |
| PRIMARY CONTACT, OBSERVED ACTIVITY (# OF PEOPLE OBSERVED)                         | 89978          |

#### **Table 1: Field parameters and Parameter Codes**

## **Bacteria Data**

Refer to the <u>SWQM Procedures Manual, Volume I, Chapter 4</u>, for the sampling procedures specific to bacteria data.

#### **Table 2: Bacteria Parameters and Parameter Codes**

| BACTERIA                                                                                   | Parameter Code |
|--------------------------------------------------------------------------------------------|----------------|
| FECAL COLIFORM (colonies/100 mL)                                                           | 31613          |
| FECAL COLIFORM, MEMBR FILTER, M-FC BROTH, (#/100ML)                                        | 31616          |
| E. COLI, mTec ( #/100 mL) (freshwater only)                                                | 31648          |
| E. COLI, IDEXX-Colilert (MPN/100 mL) Note: If reporting 31699, also report value for 31704 | 31699          |
| E. COLI, COLILERT, IDEXX, HOLDING TIME (hours)                                             | 31704          |
| E. COLI, NA + MUG OR EA + MUG, 24 HRS, 35 DEGREE ( #/100 mL) (freshwater only)             | 31700          |
| ENTEROCOCCI (#/100 mL) (marine only)                                                       | 31649          |
| ENTEROCOCCI, IDEXX-Enterolert (MPN/100 mL)                                                 | 31701          |

## 24 Hour Field Data

Refer to the <u>SWQM Procedures Manual, Volume I, Chapter 3</u>, for the sampling procedures specific to 24-hour field data.

#### **Table 3: 24 Hour Field Parameters and Parameter Codes**

| 24HR                                                      | Parameter Code |
|-----------------------------------------------------------|----------------|
| DISSOLVED OXYGEN, 24-HOUR AVG (mg/L)                      | 89857          |
| DISSOLVED OXYGEN, # MEASUREMENTS DURING 24-HR             | 89858          |
| DISSOLVED OXYGEN, 24-HOUR MAX.(mg/L)                      | 89856          |
| DISSOLVED OXYGEN, 24-HOUR MIN. (mg/L)                     | 89855          |
| WATER TEMPERATURE, 24-HR AVERAGE (°C)                     | 00209          |
| WATER TEMPERATURE, # OF MEASUREMENTS DURING 24-HRS        | 00221          |
| WATER TEMPERATURE, MAXIMUM 24-HR (°C)                     | 00210          |
| WATER TEMPERATURE, MINIMUM 24-HR (°C)                     | 00211          |
| SPECIFIC CONDUCTANCE, 24-HR AVERAGE (µS/cm)               | 00212          |
| SPECIFIC CONDUCTANCE, # OF MEASUREMENTS DURING 24-<br>HRS | 00222          |
| SPECIFIC CONDUCTANCE, MAXIMUM 24-HR (µS/cm)               | 00213          |
| SPECIFIC CONDUCTANCE, MINIMUM 24-HR (µS/cm)               | 00214          |

#### Table 3: 24 Hour Field Parameters and Parameter Codes (continued)

| 24HR                                      | Parameter Code |
|-------------------------------------------|----------------|
| pH, # OF MEASUREMENTS DURING 24-HRS       | 00223          |
| pH, MAXIMUM 24-HR (s.u.)                  | 00215          |
| pH, MINIMUM 24-HR (s.u.)                  | 00216          |
| SALINITY, 24-HR AVERAGE (ppt)             | 00218          |
| SALINITY, # OF MEASUREMENTS DURING 24-HRS | 00220          |
| SALINITY, MAXIMUM 24-HR (ppt)             | 00217          |
| SALINITY, MINIMUM 24-HR (ppt)             | 00219          |

### **Conventional Data (Inorganics and Nutrients)**

Refer to the <u>SWQM Procedures Manual, Volume I, Chapter 5</u>, for the sampling procedures specific to routine water chemistry data.

#### **Table 4: Conventional Parameters and Parameter Codes**

| CONVENTIONAL PARAMETERS - INORGANIC                           | Parameter Code |
|---------------------------------------------------------------|----------------|
| ALKALINITY, TOTAL (mg/L as CaCO3)                             | 00410          |
| RESIDUE, TOTAL NONFILTRABLE (mg/L)                            | 00530          |
| RESIDUE, VOLATILE NONFILTRABLE (mg/L)                         | 00535          |
| RESIDUE, TOTAL FILTRABLE (DRIED AT 180° C) (mg/L)             | 70300          |
| CHLORIDE (mg/L as Cl)                                         | 00940          |
| SULFATE (mg/L as SO4)                                         | 00945          |
| TOTAL ORGANIC CARBON(mg/L as C)                               | 00680          |
| CONVENTIONAL PARAMETERS - NUTRIENTS                           | Parameter Code |
| NITRATE NITROGEN, TOTAL (mg/L as N)                           | 00620          |
| NITRITE NITROGEN, TOTAL (mg/L as N)                           | 00615          |
| NITRITE + NITRATE, TOTAL ONE LAB DETERMINED VALUE (mg/L as N) | 00630          |
| AMMONIA-NITROGEN TOTAL (mg/L as N)                            | 00610          |
| ORTHOPHOSPHATE PHOSPHORUS FLDFLT <15MIN (mg/L as P)           | 00671          |
| ORTHOPHOSPHATE PHOSPHORUS FILTER >15MIN (mg/L as P)           | 70507          |
| TOTAL PHOSPHORUS (mg/L as P)                                  | 00665          |
| TOTAL KJELDAHL NITROGEN (mg/L as N)                           | 00625          |
| CHLOROPHYLL-A, SPECTROPHOTOMETRIC (µg/L)                      | 32211          |

#### Table 4: Conventional Parameters and Parameter Codes (continued)

| CONVENTIONAL PARAMETERS - NUTRIENTS     | Parameter Code |
|-----------------------------------------|----------------|
| CHLOROPHYLL-A, FLUOROMETRIC (µg/L)      | 70953          |
| PHEOPHYTIN-A, SPECTROPHOTOMETRIC (µg/L) | 32218          |
| PHEOPHYTIN-A, FLUOROMETRIC (µg/L)       | 32213          |

## **Routine Metals in Water Data**

Refer to the <u>SWQM Procedures Manual, Volume I, Chapter 5</u>, for the sampling procedures specific to metals in water data.

#### Table 5: Routine Metals in Water Parameters and Parameter Codes

| METALS IN WATER                           | Parameter Code |  |  |
|-------------------------------------------|----------------|--|--|
| Dissolved                                 | Dissolved      |  |  |
| ALUMINUM, DISSOLVED (µg/L as Al)          | 01106          |  |  |
| ARSENIC, DISSOLVED (µg/L as As)           | 01000          |  |  |
| CADMIUM, DISSOLVED (µg/L as Cd)           | 01025          |  |  |
| CALCIUM, DISSOLVED (µg/L as Ca)           | 00915          |  |  |
| CHROMIUM, DISSOLVED (µg/L as Cr)          | 01030          |  |  |
| COPPER, DISSOLVED (µg/L as Cu)            | 01040          |  |  |
| DISSOLVED HARDNESS, calc. (mg/L as CaCO3) | 46570          |  |  |
| IRON, DISSOLVED (µg/L as Fe)              | 01046          |  |  |
| LEAD, DISSOLVED (µg/L as Pb)              | 01049          |  |  |
| MAGNESIUM, DISSOLVED (µg/L as Mg)         | 00925          |  |  |
| MANGANESE, DISSOLVED (µg/L as Mn)         | 01056          |  |  |
| NICKEL, DISSOLVED (µg/L as Ni)            | 01065          |  |  |
| POTASSIUM, DISSOLVED (µg/L as K)          | 00935          |  |  |
| SILVER, DISSOLVED (µg/L as Ag)            | 01075          |  |  |
| SODIUM, DISSOLVED (mg/L as Na)            | 00930          |  |  |
| ZINC, DISSOLVED (µg/L as Zn)              | 01090          |  |  |
| Total                                     |                |  |  |
| ALUMINUM, TOTAL (µg/L as Al)Total         | 01105          |  |  |
| ARSENIC, TOTAL (µg/L as As)Total          | 01002          |  |  |
| CADMIUM, TOTAL (µg/L as Cd)               | 01027          |  |  |
| CALCIUM, TOTAL (mg/L as Ca)               | 00916          |  |  |

| METALS IN WATER                              | Parameter Code |
|----------------------------------------------|----------------|
| Total                                        |                |
| CHROMIUM, TOTAL (µg/L as Cr)                 | 01034          |
| COPPER, TOTAL (µg/L as Cu)                   | 01042          |
| IRON, TOTAL (µg/L as Fe)                     | 01045          |
| LEAD, TOTAL (µg/L as Pb)                     | 01051          |
| MAGNESIUM, TOTAL (mg/L as Mg)                | 00927          |
| MANGANESE, TOTAL (µg/L as Mn)                | 01055          |
| MERCURY, TOTAL, EPA 1631 (µg/L as Hg)        | 71959          |
| NICKEL, TOTAL (µg/L as Ni)                   | 01067          |
| POTASSIUM, TOTAL (µg/L as K)                 | 00937          |
| SELENIUM, TOTAL (µg/L as Se))                | 01147          |
| SILVER, TOTAL (µg/L as Ag)                   | 01077          |
| SODIUM, TOTAL (mg/L as Na)                   | 00929          |
| TOTAL HARDNESS, calc. (mg/L as CaCO3)        | 82394          |
| TOTAL HARDNESS, by titration (mg/L as CaCO3) | 00900          |
| ZINC, TOTAL (µg/L as Zn)                     | 01092          |

#### Table 5: Routine Metals in Water Parameters and Parameter Codes (continued)

### **Organics in Water Data**

Refer to the <u>SWQM Procedures Manual, Volume I, Chapter 5</u>, for the sampling procedures specific to organics in water data.

### **Table 6: Organics in Water Parameters and Parameter Codes**

| ORGANICS IN WATER (µg/L)        | Parameter Code |  |
|---------------------------------|----------------|--|
| Semivolatile                    |                |  |
| PHENOL (C6H50H)-SINGLE COMPOUND | 34694          |  |
| 2-CHLOROPHENOL                  | 34586          |  |
| 2-NITROPHENOL                   | 34591          |  |
| 2,4-DICHLOROPHENOL              | 34601          |  |
| PARACHLOROMETA CRESOL           | 34452          |  |
| 2,4,5-TRICHLOROPHENOL           | 77687          |  |
| 2,4,6-TRICHLOROPHENOL           | 34621          |  |
| 2,4-DIMETHYLPHENOL              | 34606          |  |

| ORGANICS IN WATER (µg/L)        | Parameter Code |  |
|---------------------------------|----------------|--|
| Semivolatile                    |                |  |
| 2,4-DINITROPHENOL               | 34616          |  |
| 4-NITROPHENOL                   | 34646          |  |
| DNOC (4,6-DINITRO-ORTHO-CRESOL) | 34657          |  |
| PCP (PENTACHLOROPHENOL)         | 39032          |  |
| N-NITROSODIMETHYLAMINE          | 34438          |  |
| BIS (2-CHLOROETHYL) ETHER       | 34273          |  |
| 1,3-DICHLOROBENZENE             | 34566          |  |
| 1,4-DICHLOROBENZENE             | 34571          |  |
| 1,2-DICHLOROBENZENE             | 34536          |  |
| BIS (2-CHLOROISOPROPYL) ETHER   | 34283          |  |
| HEXACHLOROETHANE                | 34396          |  |
| N-NITROSO-DI-N-PROPYLAMINE      | 34428          |  |
| NITROBENZENE                    | 34447          |  |
| ISOPHORONE                      | 34408          |  |
| BIS (2-CHLOROETHOXY) METHANE    | 34278          |  |
| 1,2,4-TRICHLOROBENZENE          | 34551          |  |
| NAPHTHALENE                     | 34696          |  |
| HEXACHLOROBUTADIENE             | 34391          |  |
| HEXACHLOROCYCLOPENTADIENE       | 34386          |  |
| 2-CHLORONAPHTHALENE             | 34581          |  |
| ACENAPHTHYLENE                  | 34200          |  |
| DIMETHYL PHTHALATE              | 34341          |  |
| 2,6-DINITROTOLUENE              | 34626          |  |
| ACENAPHTHENE                    | 34205          |  |
| 2,4-DINITROTOLUENE              | 34611          |  |
| FLUORENE                        | 34381          |  |
| 4-CHLOROPHENYL PHENYL ETHER     | 34641          |  |
| DIETHYL PHTHALATE               | 34336          |  |
| N-NITROSODIPHENYLAMINE          | 34433          |  |

| ORGANICS IN WATER (µg/L)                | Parameter Code |  |
|-----------------------------------------|----------------|--|
| Semivolatile                            |                |  |
| 1,2-DIPHENYLHYDRAZINE                   | 34346          |  |
| 4-BROMOPHENYL PHENYL ETHER              | 34636          |  |
| PHENANTHRENE                            | 34461          |  |
| ANTHRACENE                              | 34220          |  |
| DI-N-BUTYL PHTHALATE                    | 39110          |  |
| FLUORANTHENE                            | 34376          |  |
| PYRENE                                  | 34469          |  |
| BENZIDINE                               | 39120          |  |
| N-BUTYL BENZYL PHTHALATE                | 34292          |  |
| CHRYSENE                                | 34320          |  |
| BENZO(A)ANTHRACENE (1,2-BENZANTHRACENE) | 34526          |  |
| 3,3'-DICHLOROBENZIDINE                  | 34631          |  |
| BIS(2-ETHYLHEXYL) PHTHALATE             | 39100          |  |
| DI-N-OCTYL PHTHALATE                    | 34596          |  |
| BENZO(B)FLUORANTHENE                    | 34230          |  |
| BENZO(K)FLUORANTHENE                    | 34242          |  |
| BENZO-A-PYRENE                          | 34247          |  |
| INDENO (1,2,3-CD) PYRENE                | 34403          |  |
| 1,2,5,6-DIBENZANTHRACENE                | 34556          |  |
| BENZO(GHI)PERYLENE (1,12-BENZOPERYLENE) | 34521          |  |
| CRESOL                                  | 79778          |  |
| HEXACHLOROPHENE                         | 88813          |  |
| ETHANAMINE (N-ETHYL-N-NITROSO)          | 73611          |  |
| N-NITROSODI-N-BUTYL AMINE               | 73609          |  |
| PYRIDINE                                | 77045          |  |
| 1,2,4,5-TETRACHLOROBENZENE              | 77734          |  |
| Volatile                                |                |  |
| CHLOROMETHANE                           | 30201          |  |
| BROMOMETHANE                            | 30202          |  |

| ORGANICS IN WATER (µg/L)   | Parameter Code |
|----------------------------|----------------|
| Volatile                   |                |
| VINYL CHLORIDE             | 39175          |
| CHLOROETHANE               | 34311          |
| ACRYLONITRILE              | 34215          |
| CHLOROFORM                 | 32106          |
| METHYLENE CHLORIDE         | 34423          |
| 1,1-DICHLOROETHYLENE       | 34501          |
| 1,1-DICHLOROETHANE         | 34496          |
| TRANS-1,2-DICHLOROETHENE   | 34546          |
| 1,2-DICHLOROETHANE         | 34531          |
| CARBON TETRACHLORIDE       | 32102          |
| BROMODICHLOROMETHANE       | 32101          |
| BENZENE , HEXADECONE EXTR. | 34030          |
| DIBROMOCHLOROMETHANE       | 32105          |
| 1,1,1-TRICHLOROETHANE      | 34506          |
| 1,2-DICHLOROPROPANE        | 34541          |
| TRANS-1,3-DICHLOROPROPENE  | 34699          |
| CIS-1,3-DICHLOROPROPENE    | 34704          |
| 1,1,2-TRICHLOROETHANE      | 34511          |
| 2-CHLOROETHYL VINYL ETHER  | 34576          |
| TRICHLOROETHYLENE          | 39180          |
| BROMOFORM                  | 32104          |
| TOLUENE, HEXADECONE EXTR.  | 34010          |
| ETHYLBENZENE               | 34371          |
| 1,1,2,2-TETRACHLOROETHANE  | 34516          |
| TETRACHLOROETHYLENE        | 34475          |
| CHLOROBENZENE              | 34301          |
| XYLENE                     | 81551          |
| BIS (CHLOROMETHYL) ETHER   | 34268          |
| 1,2-DIBROMOETHANE          | 77651          |

| ORGANICS IN WATER (µg/L)               | Parameter Code |  |
|----------------------------------------|----------------|--|
| Volatile                               |                |  |
| METHYL-TERT-BUTYL ETHER (MTBE)         | 46491          |  |
| Pesticides (In whole water)            |                |  |
| DDT                                    | 39370          |  |
| DDD                                    | 39360          |  |
| DDE                                    | 39365          |  |
| ALDRIN                                 | 39330          |  |
| DIELDRIN                               | 39380          |  |
| ENDRIN                                 | 39390          |  |
| CHLORDANE, (TECH MIX & METABS)         | 39350          |  |
| ALACHLOR                               | 77825          |  |
| HEPTACHLOR                             | 39410          |  |
| HEPTACHLOR EPOXIDE                     | 39420          |  |
| METHOXYCHLOR                           | 39480          |  |
| METOLACHLOR                            | 82612          |  |
| GAMMA-BHC (LINDANE)                    | 39782          |  |
| TOXAPHENE                              | 39400          |  |
| SIMAZINE                               | 39055          |  |
| ATRAZINE (AA TREX)                     | 39630          |  |
| CYANAZINE (dissolved)                  | 04041          |  |
| HEXACHLOROBENZENE                      | 39700          |  |
| ALPHA BENZENE HEXACHLORIDE (ALPHA-BHC) | 39337          |  |
| BETA BENZENE HEXACHLORIDE (BETA-BHC)   | 39338          |  |
| DELTA BENZENE HEXACHLORIDE (DELTA-BHC) | 34259          |  |
| DICOFOL (KELTHANE)                     | 39780          |  |
| MIREX                                  | 39755          |  |
| PENTACHLOROBENZENE                     | 77793          |  |
| MALATHION                              | 39530          |  |
| PARATHION                              | 39540          |  |
| DIAZINON                               | 39570          |  |

| ORGANICS IN WATER (µg/L)    | Parameter Code |
|-----------------------------|----------------|
| Pesticides (In whole water) |                |
| 2,4-D                       | 39730          |
| 2,4,5-T                     | 39740          |
| SILVEX                      | 39760          |
| DIURON (KARMEX)             | 39650          |
| DURSBAN (CHLOROPYRIFOS)     | 81403          |
| ENDOSULFAN (ALPHA)          | 34361          |
| ENDOSULFAN (BETA)           | 34356          |
| ENDOSULFAN SULFATE          | 34351          |
| DEMETON                     | 39560          |
| GUTHION                     | 39580          |
| SEVIN                       | 39750          |
| PCB-1242                    | 39496          |
| PCB-1254                    | 39504          |
| PCB-1221                    | 39488          |
| PCB-1232                    | 39492          |
| PCB-1248                    | 39500          |
| PCB-1260                    | 39508          |
| PCB-1016                    | 34671          |
| TOTAL PCBS                  | 39516          |
| BENZENE HEXACHLORIDE (BHC)  | 20464          |

## **Metals in Sediment Data**

Refer to the <u>SWQM Procedures Manual, Volume I, Chapter 6</u>, for the sampling procedures specific to metals in sediment data.

| METALS IN SEDIMENT (mg/kg-dry weight)              | Parameter Code |
|----------------------------------------------------|----------------|
| ALUMINUM (AI)                                      | 01108          |
| ARSENIC (As)                                       | 01003          |
| BARIUM (Ba)                                        | 01008          |
| CADMIUM (Ca)                                       | 01028          |
| CHROMIUM (Cr)                                      | 01029          |
| COPPER (Cu)                                        | 01043          |
| LEAD (Pb)                                          | 01052          |
| MANGANESE (Mn)                                     | 01053          |
| MERCURY (Hg)                                       | 71921          |
| NICKEL (Ni)                                        | 01068          |
| SELENIUM (Se)                                      | 01148          |
| SILVER (Ag)                                        | 01078          |
| ZINC (Zn)                                          | 01093          |
| Sediment Conventionals                             | ·              |
| OIL & GREASE, FREON EXTR-GRAV METH (mg/kg)         | 00557          |
| OIL & GREASE, FREON EXTR-IR METH (mg/kg)           | 00561          |
| PERCENT SOLIDS IN SEDIMENT, DRY WEIGHT             | 81373          |
| TOTAL ORGANIC CARBON, DRY WEIGHT (mg/kg)           | 81951          |
| SEDIMENT PARTICLE SIZE <0.0039 CLAY % DRY WT       | 82009          |
| SEDIMENT PARTICLE SIZE 0.0039-0.0625 SILT % DRY WT | 82008          |
| SEDIMENT PARTICLE SIZE 0.0625-2MM SAND % DRY WT    | 89991          |
| SEDIMENT PARTICLE SIZE >2.0MM GRAVEL % DRY WT      | 80256          |

#### **Table 7: Metals in Sediment Parameters and Parameter Codes**

# **Organics in Sediment Data**

Refer to the <u>SWQM Procedures Manual, Volume I, Chapter 6</u>, for the sampling procedures specific to organics-in-sediment data.

#### **Table 8: Organics in Sediment Parameters and Parameter Codes**

| ORGANICS IN SEDIMENT (µg/kg-dry weight) | Parameter Code |  |
|-----------------------------------------|----------------|--|
| Semivolatile                            |                |  |
| PHENOL(C6H5OH)-SINGLE COMPOUND          | 34695          |  |
| 2-CHLOROPHENOL                          | 34589          |  |
| 2-NITROPHENOL                           | 34594          |  |
| 2,4-DICHLOROPHENOL                      | 34604          |  |
| PARACHLOROMETA CRESOL                   | 34455          |  |
| 2,4,5-TRICHLOROPHENOL                   | 78401          |  |
| 2,4,6-TRICHLOROPHENOL                   | 34624          |  |
| 2,4-DIMETHYLPHENOL                      | 34609          |  |
| 2,4-DINITROPHENOL                       | 34619          |  |
| 4-NITROPHENOL                           | 34649          |  |
| DNOC (4,6-DINITRO-ORTHO-CRESOL)         | 34660          |  |
| PCP (PENTACHLOROPHENOL )                | 39061          |  |
| N-NITROSODIMETHYLAMINE                  | 34441          |  |
| BIS (2-CHLOROETHYL) ETHER               | 34276          |  |
| 1,3-DICHLOROBENZENE                     | 34569          |  |
| 1,4-DICHLOROBENZENE                     | 34574          |  |
| 1,2-DICHLOROBENZENE                     | 34539          |  |
| BIS (2-CHLOROISOPROPYL) ETHER           | 34286          |  |
| HEXACHLOROETHANE                        | 34399          |  |
| N-NITROSODI-N-PROPYLAMINE               | 34431          |  |
| NITROBENZENE                            | 34450          |  |
| ISOPHORONE                              | 34411          |  |
| BIS (2-CHLOROETHOXY) METHANE            | 34281          |  |
| 1,2,4-TRICHLOROBENZENE                  | 34554          |  |
| NAPHTHALENE                             | 34445          |  |
| HEXACHLOROBUTADIENE                     | 39705          |  |
| HEXACHLOROCYCLOPENTADIENE               | 34389          |  |
| 2-CHLORONAPHTHALENE                     | 34584          |  |
| ACENAPHTYLENE                           | 34203          |  |
| DIMETHYL PHTHALATE                      | 34344          |  |

| ORGANICS IN SEDIMENT (µg/kg-dry weight) | Parameter Code |  |
|-----------------------------------------|----------------|--|
| Semivolatile                            |                |  |
| 2,6-DINITROTOLUENE                      | 34629          |  |
| ACENAPHTHENE                            | 34208          |  |
| 2,4-DINITROTOLUENE                      | 34614          |  |
| FLUORENE                                | 34384          |  |
| 4-CHLOROPHENYL PHENYL ETHER             | 34644          |  |
| DIETHYL PHTHALATE                       | 34339          |  |
| N-NITROSODIPHENYLAMINE                  | 34436          |  |
| 1,2-DIPHENYLHYDRAZINE                   | 34349          |  |
| 4-BROMOPHENYL PHENYL ETHER              | 34639          |  |
| PHENANTHRENE                            | 34464          |  |
| ANTHRACENE                              | 34223          |  |
| DI-N-BUTYL PHTHALATE                    | 39112          |  |
| FLUORANTHENE                            | 34379          |  |
| PYRENE                                  | 34472          |  |
| BENZIDINE                               | 39121          |  |
| N-BUTYL BENZYL PHTHALATE                | 34295          |  |
| CHRYSENE                                | 34323          |  |
| BENZO(A)ANTHRACENE (1,2-BENZANTHRACENE) | 34529          |  |
| 3,3'-DICHLOROBENZIDINE                  | 34634          |  |
| BIS(2-ETHYLHEXYL) PHTHALATE             | 39102          |  |
| DI-N-OCTYL PHTHALATE                    | 34599          |  |
| BENZO(B)FLUORANTHENE                    | 34233          |  |
| BENZO(K)FLUORANTHENE                    | 34245          |  |
| BENZO-A-PYRENE                          | 34250          |  |
| INDENO (1,2,3-CD) PYRENE                | 34406          |  |
| 1,2,5,6-DIBENZANTHRACENE                | 34559          |  |
| BENZO(GHI)PERYLENE (1,12-BENZOPERYLENE) | 34524          |  |
| CRESOL                                  | 88811          |  |
| HEXACHLOROPHENE                         | 73120          |  |

| ORGANICS IN SEDIMENT (µg/kg-dry weight) | Parameter Code |  |
|-----------------------------------------|----------------|--|
| Semivolatile                            |                |  |
| N-NITROSODIETHYLAMINE                   | 88817          |  |
| N-NITROSO-DI-N-BUTYLAMINE               | 73159          |  |
| PYRIDINE                                | 88823          |  |
| 1,2,4,5-TETRACHLOROBENZENE              | 88826          |  |
| Pesticides (In bottom depos             | sits)          |  |
| DDT                                     | 39373          |  |
| DDD                                     | 39363          |  |
| DDE                                     | 39368          |  |
| ALDRIN                                  | 39333          |  |
| DIELDRIN                                | 39383          |  |
| ENDRIN                                  | 39393          |  |
| CHLORDANE (TECH MIX & METABS)           | 39351          |  |
| ALACHLOR                                | 75050          |  |
| HEPTACHLOR EPOXIDE                      | 39413          |  |
| METHOXYCHLOR                            | 39481          |  |
| GAMMA-BHC (LINDANE)                     | 39783          |  |
| TOXAPHENE                               | 39403          |  |
| HEXACHLOROBENZENE                       | 39701          |  |
| BHC, ALPHA ISOMER                       | 39076          |  |
| B-BHC-BETA                              | 34257          |  |
| DELTA BENZENE HEXACHLORIDE (DELTA-BHC)  | 34262          |  |
| DICOFOL (KELTHANE)                      | 79799          |  |
| MIREX                                   | 79800          |  |
| PENTACHLOROBENZENE                      | 39118          |  |
| MALATHION                               | 39531          |  |
| PARATHION                               | 39541          |  |
| DIAZINON                                | 39571          |  |
| 2,4-D                                   | 39731          |  |
| 2,4,5-T                                 | 39741          |  |

| Table 8: Organics in Sediment Parameters and Parameter Codes (continued) | ) |
|--------------------------------------------------------------------------|---|
|--------------------------------------------------------------------------|---|

| ORGANICS IN SEDIMENT (µg/kg-dry weight) | Parameter Code |  |
|-----------------------------------------|----------------|--|
| Pesticides (In bottom deposits)         |                |  |
| SILVEX                                  | 39761          |  |
| DIURON (KARMEX)                         | 73030          |  |
| DURSBAN                                 | 81404          |  |
| ENDOSULFAN (ALPHA)                      | 34364          |  |
| ENDOSULFAN (BETA)                       | 34359          |  |
| ENDOSULFAN SULFATE                      | 34354          |  |
| DEMETON (SYSTOX)                        | 82400          |  |
| GUTHION                                 | 39581          |  |
| SEVIN                                   | 81818          |  |
| PCB-1242                                | 39499          |  |
| PCB-1254                                | 39507          |  |
| PCB-1221                                | 39491          |  |
| PCB-1232                                | 39495          |  |
| PCB-1248                                | 39503          |  |
| PCB-1260                                | 39511          |  |
| PCB-1016                                | 39514          |  |
| TOTAL PCBS                              | 39519          |  |
| BENZENE HEXACHLORIDE (BHC)              | 81323          |  |

# Fish Tissue Analysis Data

Refer to the <u>SWQM Procedures Manual, Volume I, Chapter 7</u>, for the sampling procedures specific to fish tissue analysis data.

# Table 9: Fish Tissue Analysis Parameters and Parameter Codes

| FISH TISSUE ANALYSIS (mg/kg-wet weight)                          | Parameter Code |
|------------------------------------------------------------------|----------------|
| Tissue                                                           |                |
| FISH SPECIES, USE EPA 3-DIGIT SPECIES CODE                       | 74990          |
| ANATOMICAL PART, EPA STORET NUMERIC CODE                         | 74995          |
| NUMBER OF INDIVIDUALS IN COMPOSITE TISSUE SAMPLE                 | 81614          |
| NUMBER OF SPECIES IN COMPOSITE TISSUE SAMPLE (ALWAYS REPORT A 1) | 81615          |
| MINIMUM SAMPLE LENGTH IN A COMPOSITE, MILLIMETERS                | 00280          |
| MAXIMUM SAMPLE LENGTH IN A COMPOSITE, MILLIMETERS                | 00281          |
| SAMPLE LENGTH IN MILLIMETERS (IF ONE FISH)                       | 00039          |
| SAMPLE WEIGHT IN GRAMS (IF ONE FISH)                             | 00019          |
| SEX (1-MALE, 2-FEMALE, 3-MIXED, 4-UNKNOWN)                       | 84100          |
| Metals in Tissue                                                 |                |
| ARSENIC                                                          | 01004          |
| CADMIUM                                                          | 71940          |
| CHROMIUM                                                         | 71939          |
| COPPER                                                           | 71937          |
| LEAD                                                             | 71936          |
| MERCURY                                                          | 71930          |
| SELENIUM                                                         | 01149          |
| Semivolatile Organics in Tissue                                  |                |
| PERCENT FAT HEXANE EXTRACTION (LIPIDS)                           | 39105          |
| PHENOL                                                           | 34468          |
| 2-CHLOROPHENOL                                                   | 34590          |
| 2-NITROPHENOL                                                    | 34595          |
| 2,4-DICHLOROPHENOL                                               | 34605          |
| PARACHLOROMETA CRESOL                                            | 34456          |
| 2,4,5,-TRICHLOROPHENOL                                           | 88809          |
| 2,4,6-TRICHLOROPHENOL                                            | 34625          |
| 2,4-DIMETHYLPHENOL                                               | 34610          |
| 2,4-DINITROPHENOL                                                | 34620          |
| 4-NITROPHENOL                                                    | 34650          |

| FISH TISSUE ANALYSIS (mg/kg-wet weight) | Parameter Code |  |  |
|-----------------------------------------|----------------|--|--|
| Semivolatile Organics in Tissue         |                |  |  |
| DNOC (4,6-DINITRO-ORTHO-CRESOL)         | 34661          |  |  |
| PCP (PENTACHLOROPHENOL)                 | 39060          |  |  |
| N-NITROSODIMETHYLAMINE                  | 34442          |  |  |
| BIS (2-CHLOROETHYL) ETHER               | 34277          |  |  |
| 1,3-DICHLOROBENZENE                     | 34570          |  |  |
| 1,4-DICHLOROBENZENE                     | 34575          |  |  |
| 1,2-DICHLOROBENZENE                     | 34540          |  |  |
| BIS (2-CHLOROISOPROPYL) ETHER           | 34287          |  |  |
| HEXACHLOROETHANE                        | 34400          |  |  |
| N-NITROSODI-N-PROPYLAMINE               | 34432          |  |  |
| NITROBENZENE                            | 34451          |  |  |
| ISOPHORONE                              | 34412          |  |  |
| BIS (2-CHLOROETHOXY) METHANE            | 34282          |  |  |
| 1,2,4-TRICHLOROBENZENE                  | 34555          |  |  |
| NAPHTHALENE                             | 34446          |  |  |
| HEXACHLOROBUTADIENE                     | 34395          |  |  |
| HEXACHLOROCYCLOPENTADIENE               | 34390          |  |  |
| 2-CHLORONAPHTHALENE                     | 34585          |  |  |
| ACENAPHTHYLENE                          | 34204          |  |  |
| DIMETHYL PHTHALATE                      | 34345          |  |  |
| 2,6-DINITROTOLUENE                      | 34630          |  |  |
| ACENAPHTHENE                            | 34209          |  |  |
| 2,4-DINITROTOLUENE                      | 34615          |  |  |
| FLUORENE                                | 34385          |  |  |
| 4-CHLOROPHENYL PHENYL ETHER             | 34645          |  |  |
| DIETHYL PHTHALATE                       | 34340          |  |  |
| N-NITROSODIPHENYLAMINE                  | 34437          |  |  |
| 1,2-DIPHENYLHYDRAZINE                   | 34350          |  |  |
| 4-BROMOPHENYL PHENYL ETHER              | 34640          |  |  |

# Table 9: Fish Tissue Analysis Parameters and Parameter Codes (continued)

# Table 9: Fish Tissue Analysis Parameters and Parameter Codes (continued)

| FISH TISSUE ANALYSIS (mg/kg-wet weight) | Parameter Code |  |  |  |
|-----------------------------------------|----------------|--|--|--|
| Semivolatile Organics in Tissue         |                |  |  |  |
| PHENANTHRENE                            | 34465          |  |  |  |
| ANTHRACENE                              | 34224          |  |  |  |
| DI-N-BUTYL PHTHALATE                    | 34683          |  |  |  |
| FLUORANTHENE                            | 34380          |  |  |  |
| PYRENE                                  | 34473          |  |  |  |
| BENZIDINE                               | 34241          |  |  |  |
| N-BUTYL BENZYL PHTHALATE                | 34296          |  |  |  |
| CHRYSENE                                | 34324          |  |  |  |
| BENZO(A)ANTHRACENE (1,2-BENZANTHRACENE) | 34530          |  |  |  |
| 3,3'-DICHLOROBENZIDINE                  | 34635          |  |  |  |
| BIS(2-ETHYLHEXYL)PHTHALATE              | 39099          |  |  |  |
| DI-N-OCTYL PHTHALATE                    | 34600          |  |  |  |
| BENZO(B)FLUORANTHENE                    | 34234          |  |  |  |
| BENZO(K)FLUORANTHENE                    | 34246          |  |  |  |
| BENZO-A-PYRENE                          | 34251          |  |  |  |
| INDENO(1,2,3-CD) PYRENE                 | 34407          |  |  |  |
| 1,2,5,6-DIBENZANTHRACENE                | 34560          |  |  |  |
| BENZO(GHI)PERYLENE (1,12-BENZOPERYLENE) | 34525          |  |  |  |
| CRESOL                                  | 88812          |  |  |  |
| HEXACHLOROPHENE                         | 88815          |  |  |  |
| N-NITROSODIETHYLAMINE                   | 88818          |  |  |  |
| N-NITROSO-DI-N-BUTYLAMINE               | 88821          |  |  |  |
| PYRIDINE                                | 88824          |  |  |  |
| 1,2,4,5-TETRACHLOROBENZENE              | 88827          |  |  |  |
| DIOXINS/FURANS TOTAL TEC                | 20463          |  |  |  |
| BROMOCHLOROMETHANE                      | 20465          |  |  |  |
| DIBROMOMETHANE                          | 20466          |  |  |  |
| Pesticides in Tissue                    |                |  |  |  |
| DDT, SUM ANALOGS IN TISSUE              | 39376          |  |  |  |
| DDD                                     | 81897          |  |  |  |

| FISH TISSUE ANALYSIS (mg/kg-wet weight) | Parameter Code |
|-----------------------------------------|----------------|
| Pesticides in Tissue                    |                |
| DDE                                     | 81896          |
| ALDRIN                                  | 34680          |
| DIELDRIN                                | 39406          |
| ENDRIN                                  | 34685          |
| CHLORDANE (TECH MIX & METABS)           | 34682          |
| HEPTACHLOR                              | 34687          |
| HEPTACHLOR EPOXIDE                      | 34686          |
| METHOXYCHLOR (UG/G)                     | 81644          |
| GAMMA-BHC (LINDANE)                     | 39785          |
| TOXAPHENE                               | 34691          |
| HEXACHLOROBENZENE                       | 34688          |
| BHC-ALPHA ISOMER (UG/G)                 | 39074          |
| B-BHC-BETA                              | 34258          |
| DELTA BENZENE HEXACHLORIDE              | 34263          |
| DICOFOL (KELTHANE)                      | 85684          |
| MIREX                                   | 81645          |
| PENTACHLOROBENZENE                      | 85679          |
| MALATHION                               | 39534          |
| PARATHION                               | 81810          |
| DIAZINON                                | 81806          |
| 2,4-D                                   | 88830          |
| 2,4,5-T                                 | 88833          |
| SILVEX (2,4,5-TP)                       | 39764          |
| DIURON (KARMEX)                         | 88844          |
| DURSBAN                                 | 81807          |
| ENDOSULFAN, ALPHA                       | 34365          |
| ENDOSULFAN SULFATE                      | 34355          |
| DEMETON (SYSTOX)                        | 82401          |
| GUTHION                                 | 81802          |

# Table 9: Fish Tissue Analysis Parameters and Parameter Codes (continued)

| Table 9: Fish Tissue Analysis Parameters and | <b>Parameter Codes (continued)</b> |
|----------------------------------------------|------------------------------------|
|----------------------------------------------|------------------------------------|

| FISH TISSUE ANALYSIS (mg/kg-wet weight) |     | Parameter Code |  |  |
|-----------------------------------------|-----|----------------|--|--|
| Pesticides in Tissue                    |     |                |  |  |
| SEVIN (CARBARYL)                        | 81  | 899            |  |  |
| PCB-1242                                | 34  | 689            |  |  |
| PCB-1254                                | 34  | 690            |  |  |
| PCB-1221                                | 34  | 664            |  |  |
| PCB-1232                                | 34  | 667            |  |  |
| PCB-1248                                | 34  | 669            |  |  |
| PCB-1260                                | 34  | 670            |  |  |
| PCB-1016                                | 34  | 674            |  |  |
| TOTAL PCBS                              | 39. | 515            |  |  |
| PCB-1268                                | 20  | 467            |  |  |
| BENZENE HEXACHLORIDE (BHC)              | 81  | 826            |  |  |

# **EPA Species Numeric Code**

For use with parameter code 74990, Fish Species: enter the EPA Species Code as the value.

Table 10: EPA Species Names, Code, and TCEQ Parameter Code

| Common Name           | Scientific Name        | EPA Species<br>Code | TCEQ Parameter<br>Code |
|-----------------------|------------------------|---------------------|------------------------|
| Alligator gar         | Lepisosteus spatula    | 1                   | 98344                  |
| American eel          | Anguilla rostrata      | 76                  | 98361                  |
| Arkansas River shiner | Notropis girardi       | 361                 | 98472                  |
| Atlantic stingray     | Dasyatis sabina        | 144                 | 98318                  |
| Banded pygmy sunfish  | Elassoma zonatum       | 418                 | 99113                  |
| Bantam sunfish        | Lepomis symmetricus    | 416                 | 99102                  |
| Bay anchovy           | Anchoa mitchilli       | 166                 | 98412                  |
| Bayou killifish       | Fundulus pulvereus     | 682                 | 98699                  |
| Bigmouth buffalo      | Ictiobus cyprinella    | 3                   | 98508                  |
| Bigscale log perch    | Percina macrolepida    | 580                 | 99069                  |
| Black buffalo         | Ictiobus niger         | 105                 | 98509                  |
| Black bullhead        | Ameirus melas          | 4                   | 98563                  |
| Black crappie         | Pomoxis nigromaculatus | 5                   | 99109                  |
| Black drum            | Pogonias cromis        | 199                 | 98970                  |

| Common Name            | Scientific Name         | EPA Species<br>Code | TCEQ Parameter<br>Code |
|------------------------|-------------------------|---------------------|------------------------|
| Blackside darter       | Percina maculata        | 436                 | 98540                  |
| Blackspot shiner       | Notropis atrocaudalis   | 451                 | 98462                  |
| Blackspotted topminnow | Fundulus olivaceus      | 406                 | 98678                  |
| Blackstripe topminnow  | Fundulus notatus        | 404                 | 98677                  |
| Blacktail redhorse     | Moxostoma poecilurum    | 391                 | 98515                  |
| Blacktail shiner       | Cyprinella venustus     | 377                 | 98487                  |
| Blue catfish           | Ictalurus furcatus      | 67                  | 98562                  |
| Bluegill sunfish       | Lepomis macrochirus     | 8                   | 99097                  |
| Blue sucker            | Cycleptus elongatus     | 386                 | 98505                  |
| Bluntnose darter       | Etheostoma chlorosomum  | 547                 | 99075                  |
| Bowfin                 | Amia calva              | 68                  | 98347                  |
| Brook silverside       | Labidesthes sicculus    | 88                  | 98734                  |
| Bullhead minnow        | Pimephales vigilax      | 384                 | 98498                  |
| Chain pickerel         | Esox niger              | 14                  | 98405                  |
| Channel catfish        | Ictalurus punctatus     | 16                  | 98561                  |
| Chesnut lamprey        | Icthyomyzon castaneus   | 330                 | 99297                  |
| Common carp            | Cyprinus carpio         | 12                  | 98437                  |
| Common shiner          | Notropis cornutus       | 89                  | 98470                  |
| Common stoneroller     | Campostoma anomalum     | 335                 | 98502                  |
| Creek chub             | Semotilus atromaculatus | 90                  | 98443                  |
| Creek chubsucker       | Erimyzon oblongus       | 387                 | 98519                  |
| Cypress darter         | Etheostoma proeliare    | 426                 | 99083                  |
| Cypress minnow         | Hybognathus hayi        | 339                 | 98493                  |
| Dollar sunfish         | Lepomis marginatus      | 414                 | 99098                  |
| Dusky darter           | Percina sciera          | 440                 | 98541                  |
| Emerald shiner         | Notropis atherinoides   | 77                  | 98461                  |
| Fathead minnow         | Pimephales promelas     | 382                 | 98497                  |
| Flathead catfish       | Pylodictus olivaris     | 489                 | 98570                  |
| Flathead chub          | Platygobio gracilis     | 345                 | 98447                  |
| Flier                  | Centrarchus macropterus | 412                 | 99111                  |

| Common Name           | Scientific Name          | EPA Species<br>Code | TCEQ Parameter<br>Code |
|-----------------------|--------------------------|---------------------|------------------------|
| Freckled madtom       | Noturus nocturnus        | 400                 | 98575                  |
| Freshwater drum       | Aplodinotus grunniens    | 20                  | 98958                  |
| Gafftopsail catfish   | Bagre marinus            | 200                 | 98557                  |
| Ghost shiner          | Notropis buchanani       | 354                 | 98467                  |
| Gizzard shad          | Dorosoma cepedianum      | 21                  | 98430                  |
| Golden redhorse       | Moxostoma erythrurum     | 390                 | 98514                  |
| Golden shiner         | Notemigonus crysoleucas  | 22                  | 98441                  |
| Golden topminnow      | Fundulus chrysotus       | 403                 | 98694                  |
| Goldfish              | Carassius auratus        | 24                  | 98439                  |
| Goldstripe darter     | Etheostoma parvipinne    | 425                 | 99082                  |
| Grass carp            | Ctenopharyngodon idellus | 337                 | 98528                  |
| Green sunfish         | Lepomis cyanellus        | 25                  | 99094                  |
| Harlequin darter      | Etheostoma histrio       | 420                 | 99080                  |
| Hogchoker             | Trinectes maculatus      | 522                 | 99218                  |
| Ironcolor shiner      | Notropis chalybaeus      | 356                 | 98468                  |
| Ladyfish              | Elops saurus             | 486                 | 98352                  |
| Lake chubsucker       | Erimyzon sucetta         | 387                 | 98520                  |
| Largemouth bass       | Micropterus salmoides    | 31                  | 99090                  |
| Log perch             | Percina caprodes         | 433                 | 99068                  |
| Longear sunfish       | Lepomis megalotis        | 72                  | 99099                  |
| Longnose dace         | Rhinichthys cataractae   | 108                 | 98455                  |
| Longnose gar          | Lepisosteus osseus       | 32                  | 98341                  |
| Mimic shiner          | Notropis volucellus      | 378                 | 98488                  |
| Mosquitofish          | Gambusia affinis         | 407                 | 98713                  |
| Mozambique tilapia    | Tilapia mossambica       | 54                  | 98565                  |
| Mud darter            | Etheostoma asprigene     | 544                 | 99074                  |
| Northern pike         | Esox lucius              | 36                  | 98406                  |
| Orangebelly darter    | Etheostoma radiosum      | 428                 | 99084                  |
| Orangespotted sunfish | Lepomis humilus          | 413                 | 99096                  |
| Orangethroat darter   | Etheostoma spectabile    | 429                 | 99085                  |

| Common Name         | Scientific Name             | EPA Species<br>Code | TCEQ Parameter<br>Code |
|---------------------|-----------------------------|---------------------|------------------------|
| Paddlefish          | Polyodon spathula           | 106                 | 98335                  |
| Pallid shiner       | Notropis amnis              | 350                 | 98460                  |
| Pinfish             | Lagodon rhomboides          | 207                 | 99153                  |
| Pirate perch        | Aphredoderus sayanus        | 410                 | 98773                  |
| Plains killifish    | Fundulus zebrinus           | 455                 | 98729                  |
| Plains minnow       | Hybognathus placitus        | 341                 | 98495                  |
| Pugnose minnow      | Opsopoeodus emiliae         | 358                 | 98452                  |
| Rainwater killifish | Lucania parva               | 539                 | 98689                  |
| Redbreast sunfish   | Lepomis auritus             | 70                  | 99093                  |
| Red drum            | Sciaenops ocellata          | 202                 | 98962                  |
| Redear sunfish      | Lepomis microlophus         | 40                  | 99100                  |
| Redfin pickerel     | Esox americanus             | 168                 | 98404                  |
| Redfin shiner       | Lythrurus umbratilis        | 376                 | 98486                  |
| Red River shiner    | Notropis bairdi             | 351                 | 98463                  |
| Red shiner          | Cyprinella lutrensis        | 363                 | 98474                  |
| Redspotted sunfish  | Lepomis miniatus            |                     | 99101                  |
| Ribbon shiner       | Lythrurus fumeus            | 359                 | 98471                  |
| Rio Grande cichlid  | Cichlasoma cyanoguttatum    | 686                 | 98953                  |
| River carpsucker    | Carpiodes carpio            | 42                  | 98511                  |
| River darter        | Percina shumardi            | 441                 | 99168                  |
| River shiner        | Notropis blennius           | 352                 | 98464                  |
| Rock bass           | Ambloplites rupestris       | 43                  | 99106                  |
| Sabine shiner       | Notropis sabinae            | 371                 | 98481                  |
| Sand seatrout       | Cynoscion arenarius         | 134                 | 98973                  |
| Sand shiner         | Notropis stramineus         | 452                 | 98484                  |
| Sauger              | Stizostedion canadense      | 559                 | 99057                  |
| Scaly sand darter   | Ammocrypta vivax            | 542                 | 99072                  |
| Sheepshead          | Archosargus probatocephalus | 78                  | 99155                  |
| Shortnose gar       | Lepisosteus platostomus     | 107                 | 98342                  |
| Shovelnose sturgeon | Scaphirynchus platorynchus  | 102                 | 98337                  |
| Silverband shiner   | Notropis shumardi           | 372                 | 98482                  |
|                     |                             | 1                   |                        |

| Common Name         | Scientific Name          | EPA Species<br>Code | TCEQ Parameter<br>Code |
|---------------------|--------------------------|---------------------|------------------------|
| Silver chub         | Macrhybopsis storeriana  | 346                 | 98448                  |
| Silver perch        | Bairdiella chrysoura     | 485                 | 98960                  |
| Silvery minnow      | Hybognathus nuchalis     | 340                 | 98494                  |
| Skipjack herring    | Alosa chrysochloris      | 26                  | 98418                  |
| Slough darter       | Etheostoma gracile       | 176                 | 99078                  |
| Smallmouth bass     | Micropterus dolomieui    | 47                  | 99091                  |
| Smallmouth buffalo  | Ictiobus bubalus         | 48                  | 98507                  |
| Southern flounder   | Paralichthys lethostigma | 201                 | 99246                  |
| Speckled chub       | Macrhybopsis aestivalis  | 342                 | 98449                  |
| Spot                | Leiostomus xanthurus     | 181                 | 98964                  |
| Spotted bass        | Micropterus punctulatus  | 49                  | 99089                  |
| Spotted gar         | Lepisosteus oculatus     | 50                  | 98340                  |
| Spotted seatrout    | Cynoscion nebulosus      | 142                 | 98974                  |
| Spotted sucker      | Minytrema melanops       | 51                  | 98517                  |
| Starhead topminnow  | Fundulus dispar          | 405                 | 98693                  |
| Striped anchovy     | Anchoa hepsetus          | 532                 | 98410                  |
| Striped bass        | Morone saxatilis         | 52                  | 99165                  |
| Striped killifish   | Fundulus similis         | 526                 | 98700                  |
| Striped mullet      | Mugil cephalus           | 53                  | 98793                  |
| Suckermouth minnow  | Phenacobius mirabilis    | 380                 | 98457                  |
| Swamp darter        | Etheostoma fusiforme     | 176                 | 99077                  |
| Tadpole madtom      | Noturus gyrinus          | 397                 | 98574                  |
| Threadfin shad      | Dorosoma petenense       | 333                 | 98429                  |
| Walleye             | Stizostedion vitreum     | 55                  | 99058                  |
| Warmouth            | Lepomis gulosus          | 56                  | 99095                  |
| Weed shiner         | Notropis texanus         | 375                 | 98485                  |
| Western sand darter | Ammocrypta clara         | 542                 | 99071                  |
| White bass          | Morone chrysops          | 57                  | 99163                  |
| White crappie       | Pomoxis annularis        | 59                  | 99108                  |

| Common Name     | Scientific Name         | EPA Species<br>Code | TCEQ Parameter<br>Code |
|-----------------|-------------------------|---------------------|------------------------|
| Yellow bass     | Morone mississippiensis | 93                  | 99164                  |
| Yellow bullhead | Ameirurus natalis       | 62                  | 98564                  |
| Yellow perch    | Perca flavescens        | 63                  | 99062                  |

#### **EPA Anatomical Numeric Code**

For use with parameter code 74995, Anatomical Part: enter the EPA Anatomical Part Code as the value.

Table 11: EPA Anatomical Parts, Codes, and Alpha Codes

| Anatomy                | Anatomical Part Code | EPA Alpha Code (84007) |
|------------------------|----------------------|------------------------|
| Stomach                | 5                    | STOM                   |
| Liver                  | 6                    | LIVER                  |
| Intestine              | 7                    | INTST                  |
| Gall Bladder           | 8                    | GLBDR                  |
| Heart                  | 11                   | HEART                  |
| Kidney                 | 32                   | KIDNY                  |
| Bladder                | 37                   | BLADR                  |
| Spleen                 | 43                   | SLPN                   |
| Scales                 | 57                   | SCALE                  |
| Skin                   | 58                   | SKIN                   |
| Whole Organism         | 59                   | WHORG                  |
| Brain                  | 61                   | BRAIN                  |
| Male                   | 68                   | MALE                   |
| Female                 | 69                   | FMALE                  |
| Ovary                  | 70                   | OVARY                  |
| Gills                  | 72                   | GILLS                  |
| Filet                  | 86                   | FILET                  |
| Edible Portion         | 87                   | EAT                    |
| Headless Whole Fish    | 88                   | HDLS                   |
| Eviscerated Whole Fish | 89                   | EVISC                  |
| Lipid Tissue           | 91                   | LIPID                  |
| Eggs                   | 93                   | EGGS                   |
| Larvae                 | 115                  | LARVA                  |

## **Biological Data**

Refer to the <u>SWQM Procedures</u>, <u>Volume II</u>, for the monitoring procedures specific to biological data. Parenthetical information for each sampling category below dictates how to report the biological data as a composite record as well as the composite category, composite type, and parameter code that the composite should be based on when possible.

| BIOLOGICAL                                                                                   | Parameter Code |
|----------------------------------------------------------------------------------------------|----------------|
| Nekton Texas Regional Index Summary & Met                                                    | adata          |
| (Composite, Both, CN)                                                                        |                |
| BIOLOGICAL DATA (report value of 1011 for Nekton Texas<br>Regional Index Summary & Metadata) | 89888          |
| ECOREGION LEVEL III (TEXAS ECOREGION CODE)                                                   | 89961          |
| NEKTON ORGANISMS-NONE PRESENT                                                                | 98005          |
| NUMBER OF SPECIES, FISH                                                                      | 98003          |
| TOTAL NUMBER OF NATIVE CYPRINID SPECIES                                                      | 98032          |
| TOTAL NUMBER OF BENTHIC INVERTIVORE SPECIES                                                  | 98052          |
| TOTAL NUMBER OF BENTHIC FISH SPECIES                                                         | 98053          |
| TOTAL NUMBER OF SUNFISH SPECIES                                                              | 98008          |
| TOTAL NUMBER OF INTOLERANT SPECIES, FISH                                                     | 98010          |
| PERCENT INDIVIDUALS AS TOLERANT FISH<br>SPECIES(EXCLUDING WESTERN MOSQUITOFISH)              | 98070          |
| PERCENT OF INDIVIDUALS AS OMNIVORES, FISH                                                    | 98017          |
| PERCENT OF INDIVIDUALS AS INVERTIVORES, FISH                                                 | 98021          |
| PERCENT OF INDIVIDUALS AS PISCIVORES, FISH                                                   | 98022          |
| TOTAL NUMBER OF INDIVIDUALS SEINING                                                          | 98039          |
| TOTAL NUMBER OF INDIVIDUALS ELECTROFISHING                                                   | 98040          |
| NUMBER OF INDIVIDUALS PER SEINE HAUL                                                         | 98062          |
| NUMBER OF INDIVIDUALS PER MINUTE ELECTROFISHING                                              | 98069          |

#### Table 12: Biological Parameters & Parameter Codes, Sampling Categories & Values

# Table 12: Biological Parameters & Parameter Codes, Sampling Categories & Values (continued)

| BIOLOGICAL                                                                    | Parameter Code |
|-------------------------------------------------------------------------------|----------------|
| Nekton Electrofishing                                                         |                |
| (Composite, Both, CN 89944)                                                   |                |
| BIOLOGICAL DATA (report value of 1012 for Nekton Electrofishing)              | 89888          |
| NEKTON ORGANISMS-NONE PRESENT                                                 | 98005          |
| ELECTROFISHING METHOD 1=BOAT 2=BACKPACK<br>3=TOTEBARGE                        | 89943          |
| ELECTROFISH EFFORT, DURATION OF SHOCKING (SEC)                                | 89944          |
| Nekton Seining                                                                |                |
| (Composite, Both, CN 89947)                                                   |                |
| BIOLOGICAL DATA (report value of 1013 for Nekton Seining)                     | 89888          |
| NEKTON ORGANISMS-NONE PRESENT                                                 | 98005          |
| SEINING EFFORT (# OF SEINE HAULS)                                             | 89947          |
| COMBINED LENGTH OF SEINE HAULS (METERS)                                       | 89948          |
| SEINING EFFORT, DURATION (MINUTES)                                            | 89949          |
| AREA SEINED (SQ METERS)                                                       | 89976          |
| SEINE, MINIMUM MESH SIZE, AVERAGE BAR, NEKTON,IN                              | 89930          |
| SEINE, MAXIMUM MESH SIZE, AVG BAR, NEKTON,INCH                                | 89931          |
| NET LENGTH (METERS)                                                           | 89941          |
| Nekton Observation Not Captured                                               |                |
| (Composite, Both, CN)                                                         |                |
| BIOLOGICAL DATA (report value of 1014 for Nekton<br>Observation Not Captured) | 89888          |
| NUMBER OF SPECIES, FISH                                                       | 98003          |

 Table 12: Biological Parameters & Parameter Codes, Sampling Categories & Values (continued)

| Nekton Hoop Net                                                              |       |  |
|------------------------------------------------------------------------------|-------|--|
| (Composite, Both, CN, 98077)                                                 |       |  |
| <b>BIOLOGICAL DATA (report value of 1015 for Nekton Hoop</b><br>Net)         | 89888 |  |
| NEKTON ORGANISMS-NONE PRESENT                                                | 98005 |  |
| DURATION OF DEPLOYMENT (HRS)                                                 | 98077 |  |
| NUMBER OF SPECIES, FISH                                                      | 98003 |  |
| HOOP NET WIDTH (METERS)                                                      | 98124 |  |
| Nekton Hook and Line<br>(Composite, Both, CN, 89942)                         |       |  |
| <b>BIOLOGICAL DATA (report value of 1016 for Nekton Hook and Line)</b>       | 89888 |  |
| NEKTON ORGANISMS-NONE PRESENT                                                | 98005 |  |
| NET OR HOOKLINE EFFORT, DURATION IN WATER (HRS)                              | 89942 |  |
| NUMBER OF SPECIES, FISH                                                      | 98003 |  |
| Nekton Castnet<br>(Composite, Both, CN, 89945)                               |       |  |
| <b>BIOLOGICAL DATA (report value of 1017 for Nekton</b><br>Castnet)          | 89888 |  |
| NEKTON ORGANISMS-NONE PRESENT                                                | 98005 |  |
| CASTNETTING EFFORT (# OF CASTS)                                              | 89945 |  |
| NUMBER OF SPECIES, FISH                                                      | 98003 |  |
| Nekton Trawl<br>(Composite, Both, CN, 89907)                                 |       |  |
| <b>BIOLOGICAL DATA (report value of 1018 for Nekton Trawl)</b>               | 89888 |  |
| NEKTON ORGANISMS-NONE PRESENT                                                | 98005 |  |
| TRAWL, OTTER, DURATION (MINUTES)                                             | 89907 |  |
| TRAWL, OTTER, WIDTH (M)                                                      | 89953 |  |
| NUMBER OF SPECIES, FISH                                                      | 98003 |  |
| Nekton Water Intake Screen<br>(Composite, Both, CN, 89940)                   |       |  |
| <b>BIOLOGICAL DATA (report value of 1019 for Nekton Water Intake Screen)</b> | 89888 |  |
| NEKTON ORGANISMS-NONE PRESENT                                                | 98005 |  |

 Table 12: Biological Parameters & Parameter Codes, Sampling Categories & Values (continued)

| Nekton Water Intake Screen<br>(Composite, Both, CN, 89940)                                                                                                                    |            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
| INTAKE SCREEN COLLECTION, DURATION IN MINUTES                                                                                                                                 | 89940      |  |
| COOLING WATER INTAKE SCREEN(1=REVOLVNG,2=STATIC)                                                                                                                              | 89951      |  |
| NUMBER OF SPECIES, FISH                                                                                                                                                       | 98003      |  |
| Nekton Gill Net<br>(Composite, Both, CN, 98077)                                                                                                                               |            |  |
| <b>BIOLOGICAL DATA</b> (report value of 10111 for Nekton Gill Net                                                                                                             | ) 89888    |  |
| NEKTON ORGANISMS-NONE PRESENT                                                                                                                                                 | 98005      |  |
| DURATION OF DEPLOYMENT (HRS)                                                                                                                                                  | 98077      |  |
| NUMBER OF SPECIES, FISH                                                                                                                                                       | 98003      |  |
| GILL NET MESH SIZE (INCHES)                                                                                                                                                   | 98078      |  |
| Benthic Macroinvertebrates Rapid Bioassessment Q<br>(Composite, Both, CN, 89904)                                                                                              | ualitative |  |
| <b>BIOLOGICAL DATA (report value of 2011 for Benthic<br/>Macroinvertebrates Rapid Bioassessment Qualitative)</b>                                                              | 89888      |  |
| BENTHIC DATA REPORTING UNITS (1=NUMBER OF INDIVIDUAL<br>IN SUB-SAMPLE, 2=NUMBER OF INDIVIDUALS/FT2, 3=NUMBE<br>OF INDIVIDUALS/M2, 4=TOTAL NUMBER OF INDIVIDUALS IN<br>SAMPLE) | R          |  |
| BENTHIC SAMPLE COLLECTION METHOD (1=SURBER, 2=EKMAN<br>3=KICKNET, 4=PETERSON, 5=HESTER DENDY, 6=SNAG, 7=HESS)                                                                 | , 89950    |  |
| MESH SIZE, ANY NET OR SIEVE, AVERAGE BAR (CM)                                                                                                                                 | 89946      |  |
| KICKNET EFFORT, AREA KICKED (SQ.METER)                                                                                                                                        | 89903      |  |
| KICKNET EFFORT, MINUTES KICKED (MIN.)                                                                                                                                         | 89904      |  |
| DIP NET EFFORT, AREA SWEPT (SQ.METER)                                                                                                                                         | 89902      |  |
| NUMBER OF INDIVIDUALS IN BENTHIC SAMPLE                                                                                                                                       | 89906      |  |
| DEBRIS/SHORELINE SAMPLING EFFORT, MINUTES                                                                                                                                     | 89905      |  |
| ECOREGION LEVEL III (TEXAS ECOREGION CODE)                                                                                                                                    | 89961      |  |
| BENTHOS ORGANISMS -NONE PRESENT                                                                                                                                               | 90005      |  |
| TOTAL TAXA RICHNESS, BENTHOS                                                                                                                                                  | 90055      |  |
| NUMBER OF EPT INDEX                                                                                                                                                           | 90008      |  |
| HILSENHOFF BIOTIC INDEX (HBI)                                                                                                                                                 | 90007      |  |

 Table 12: Biological Parameters & Parameter Codes, Sampling Categories & Values (continued)

| Benthic Macroinvertebrates Rapid Bioassessment Qualitative<br>(Composite, Both, CN, 89904)                                                                                      |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| CHIRONOMIDAE, PERCENT OF INDIVIDUALS                                                                                                                                            | 90062   |
|                                                                                                                                                                                 |         |
| DOMINANT TAXON, BENTHOS PERCENT OF INDIVIDUALS                                                                                                                                  | 90042   |
| DOMINANT BENTHIC FUNCTIONAL FEEDING GRP, % O<br>INDIVIDUALS                                                                                                                     | F 90010 |
| BENTHIC PREDATORS, PERCENT OF INDIVIDUALS                                                                                                                                       | 90036   |
| RATIO OF INTOLERANT TO TOLERANT TAXA, BENTHOS                                                                                                                                   | 90050   |
| PERCENT OF TOTAL TRICHOPTERA INDIVIDUALS A<br>HYDROPSYCHIDAE                                                                                                                    | S 90069 |
| NUMBER OF NON-INSECT TAXA                                                                                                                                                       | 90052   |
| BENTHIC GATHERERS, PERCENT OF INDIVIDUALS                                                                                                                                       | 90025   |
| ELMIDAE, PERCENT OF INDIVIDUALS                                                                                                                                                 | 90054   |
| RAPID BIOASSESSMENT PROTOCOLS BENTHI<br>MACROINVERTEBRATE IBI SCORE                                                                                                             | C 90081 |
| BENTHIC DATA REPORTING UNITS (1=NUMBER OF INDIVIDUAL<br>IN SUB-SAMPLE, 2=NUMBER OF INDIVIDUALS/FT2, 3=NUMBE<br>OF INDIVIDUALS/M2, 4=TOTAL NUMBER OF INDIVIDUALS I<br>SAMPLE)    | R       |
| Benthic Macroinvertebrates Quantitative Prot<br>(Composite, Both, CN, 89934, 89901, or 8993                                                                                     |         |
| BIOLOGICAL DATA (report value of 2012 for Benthic<br>Macroinvertebrates Quantitative Protocol)                                                                                  | 89888   |
| BENTHIC DATA REPORTING UNITS (1=NUMBER OF<br>INDIVIDUALS IN SUB-SAMPLE, 2=NUMBER OF<br>INDIVIDUALS/FT2, 3=NUMBER OF INDIVIDUALS/M2, 4=TOTAL<br>NUMBER OF INDIVIDUALS IN SAMPLE) | 89899   |
| BENTHIC SAMPLE COLLECTION METHOD (1=SURBER,<br>2=EKMAN, 3=KICKNET, 4=PETERSON, 5=HESTER DENDY,<br>6=SNAG, 7=HESS)                                                               | 89950   |
| MESH SIZE, ANY NET OR SIEVE, AVERAGE BAR (CM)                                                                                                                                   | 89946   |
| AREA OF SNAG SURFACE SAMPLED (SQ.MT)                                                                                                                                            | 89975   |
| HESTER-DENDY DURATION (DAYS)                                                                                                                                                    | 89933   |
| PETERSEN SAMPLER EFFORT, AREA SAMPLED (SQ. MTR.)                                                                                                                                | 89934   |
| EKMAN SAMPLER EFFORT, AREA SAMPLED (SQ.METER)                                                                                                                                   | 89935   |

 Table 12: Biological Parameters & Parameter Codes, Sampling Categories & Values (continued)

| Benthic Macroinvertebrates Quantitative Protocol<br>(Composite, Both, CN, 89934, 89901, or 89935)                 |       |
|-------------------------------------------------------------------------------------------------------------------|-------|
| SURBER SAMPLER EFFORT, AREA SAMPLED (SQ. METER)                                                                   | 89901 |
| ECOREGION LEVEL III (TEXAS ECOREGION CODE)                                                                        | 89961 |
| BENTHOS ORGANISMS -NONE PRESENT                                                                                   | 90005 |
| TOTAL TAXA RICHNESS, BENTHOS                                                                                      | 90055 |
| NUMBER OF DIPTERA TAXA                                                                                            | 90056 |
| NUMBER OF EPHEMEROPTERA TAXA                                                                                      | 90057 |
| TOTAL NUMBER OF INTOLERANT TAXA, BENTHOS                                                                          | 90058 |
| EPT, PERCENT OF INDIVIDUALS                                                                                       | 90060 |
| CHIRONOMIDAE, PERCENT OF INDIVIDUALS                                                                              | 90062 |
| TOLERANT BENTHOS, PERCENT OF INDIVIDUALS                                                                          | 90066 |
| BENTHIC GRAZERS, PERCENT OF INDIVIDUALS                                                                           | 90020 |
| BENTHIC GATHERERS, PERCENT OF INDIVIDUALS                                                                         | 90025 |
| BENTHIC FILTERERS, PERCENT OF INDIVIDUALS                                                                         | 90030 |
| DOMINANT 3 TAXA, PERCENT OF INDIVIDUALS                                                                           | 90067 |
| QUANTITATIVE PROTOCOLS REGIONAL BENTHIC<br>MACROINVERTEBRATE IBI SCORE                                            | 90085 |
| Benthic Macroinvertebrates Other Protoco                                                                          | 1     |
| (Composite, Both, CN, 89904)                                                                                      |       |
| BIOLOGICAL DATA (report value of 2013 for Benthic<br>Macroinvertebrates Other Protocol)                           | 89888 |
| DEBRIS/SHORELINE SAMPLING EFFORT, MINUTES                                                                         | 89905 |
| BENTHIC SAMPLE COLLECTION METHOD (1=SURBER,<br>2=EKMAN, 3=KICKNET, 4=PETERSON, 5=HESTER DENDY,<br>6=SNAG, 7=HESS) | 89950 |
| KICKNET EFFORT, MINUTES KICKED (MIN.)                                                                             | 89904 |
| ECOREGION LEVEL III (TEXAS ECOREGION CODE)                                                                        | 89961 |
| BENTHOS ORGANISMS -NONE PRESENT                                                                                   | 90005 |

 Table 12: Biological Parameters & Parameter Codes, Sampling Categories & Values (continued)

| Habitat TCEQ Parts 1, 2, and 3 Protocol<br>(Composite, Both, CN)                                   |       |
|----------------------------------------------------------------------------------------------------|-------|
| BIOLOGICAL DATA (report value of 3011 for Habitat TCEQ<br>Parts 1, 2, and 3 Protocol)              | 89888 |
| STREAM TYPE; 1=PERENNIAL 2=INTERMITTENT S/PERENNIAL<br>POOLS 3=INTERMITTENT 4=UNKNOWN              | 89821 |
| STREAMBED SLOPE (M/KM)                                                                             | 72051 |
| DRAINAGE AREA ABOVE MOST DOWNSTREAM TRANSECT                                                       | 89859 |
| STREAM ORDER                                                                                       | 84161 |
| REACH LENGTH OF STREAM EVALUATED (M)                                                               | 89884 |
| NUMBER OF LATERAL TRANSECTS MADE                                                                   | 89832 |
| AVERAGE STREAM WIDTH (METERS)                                                                      | 89861 |
| AVERAGE STREAM DEPTH (METERS)                                                                      | 89862 |
| FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)                                                    | 00061 |
| FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER                                                 | 89835 |
| HABITAT FLOW STATUS, 1=NO FLOW, 2=LOW,3=MOD,4=HIGH                                                 | 89848 |
| MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)                                                       | 89864 |
| MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)                                                        | 89865 |
| TOTAL NUMBER OF STREAM BENDS                                                                       | 89839 |
| NUMBER OF WELL DEFINED STREAM BENDS                                                                | 89840 |
| NUMBER OF MODERATELY DEFINED STREAM BENDS                                                          | 89841 |
| NUMBER OF POORLY DEFINED STREAM BENDS                                                              | 89842 |
| TOTAL NUMBER OF RIFFLES                                                                            | 89843 |
| DOMINANT SUBSTRATE<br>TYPE(1=CLAY,2=SILT,3=SAND,4=GRAVEL,5=COBBLE,6=BOULD<br>ER,7=BEDROCK,8=OTHER) | 89844 |
| AVERAGE PERCENT OF SUBSTRATE GRAVEL SIZE OR LARGER                                                 | 89845 |
| AVERAGE PERCENTAGE INSTREAM COVER                                                                  | 84159 |
| NUMBER OF STREAM COVER TYPES                                                                       | 89929 |
| AVERAGE STREAM BANK EROSION (%)                                                                    | 89846 |
| AVERAGE STREAM BANK SLOPE (DEGREES)                                                                | 89847 |

 Table 12: Biological Parameters & Parameter Codes, Sampling Categories & Values (continued)

| Habitat TCEQ Parts 1, 2, and 3 Protocol<br>(Composite, Both, CN)                                          |       |
|-----------------------------------------------------------------------------------------------------------|-------|
| AVERAGE WIDTH OF NATURAL RIPARIAN VEGETATION (M)                                                          | 89866 |
| AVERAGE WIDTH OF NATURAL RIPARIAN BUFFER ON LEFT<br>BANK (M)                                              | 89872 |
| AVERAGE WIDTH OF NATURAL RIPARIAN BUFFER ON RIGHT<br>BANK (M)                                             | 89873 |
| AVERAGE PERCENT TREES AS RIPARIAN VEGETATION                                                              | 89849 |
| AVERAGE PERCENT SHRUBS AS RIPARIAN VEGETATION                                                             | 89850 |
| AVERAGE PERCENT GRASS AS RIPARIAN VEGETATION                                                              | 89851 |
| AVERAGE PERCENT CULTIVATED FIELDS AS RIPARIAN VEGETATION                                                  | 89852 |
| AVERAGE PERCENT OTHER AS RIPARIAN VEGETATION                                                              | 89853 |
| AVERAGE PERCENTAGE OF TREE CANOPY COVERAGE                                                                | 89854 |
| AESTHETICS OF REACH (1=WILD 2=NAT. 3=COMM. 4=OFF.)                                                        | 89867 |
| LAND DEVELOP IMPACT (1=UNIMP,2=LOW,3=MOD,4=HIGH)                                                          | 89962 |
| RIPARIAN VEGETATION %; LEFT BANK - TREES                                                                  | 89822 |
| RIPARIAN VEGETATION %; RIGHT BANK - TREES                                                                 | 89823 |
| RIPARIAN VEGETATION %; LEFT BANK SHRUBS                                                                   | 89824 |
| RIPARIAN VEGETATION %; RIGHT BANK - SHRUBS                                                                | 89825 |
| RIPARIAN VEGETATION %: LEFT BANK - GRASSES OR FORBS                                                       | 89826 |
| RIPARIAN VEGETATION %; RIGHT BANK - GRASSES OR FORBS                                                      | 89827 |
| RIPARIAN VEGETATION %: LEFT BANK - CULTIVATED FIELDS                                                      | 89828 |
| RIPARIAN VEGETATION %: RIGHT BANK - CULTIVATED<br>FIELDS                                                  | 89829 |
| RIPARIAN VEGETATION %: LEFT BANK - OTHER                                                                  | 89830 |
| RIPARIAN VEGETATION %: RIGHT BANK - OTHER                                                                 | 89871 |
| AVAILABLE INSTREAM COVER HQI SCORE: 4=ABUNDANT<br>3=COMMON 2=RARE 1=ABSENT                                | 89874 |
| BOTTOM SUBSTRATE STABILITY HQI SCORE: 4=STABLE<br>3=MODERATELY STABLE 2=MODERATELY UNSTABLE<br>1=UNSTABLE | 89875 |

# Table 12: Biological Parameters & Parameter Codes, Sampling Categories & Values (continued)

| Habitat TCEQ Parts 1, 2, and 3 Protocol<br>(Composite, Both, CN)                           |       |
|--------------------------------------------------------------------------------------------|-------|
| NUMBER OF RIFFLES HQI SCORE: 4=ABUNDANT 3=COMMON<br>2=RARE 1=ABSENT                        | 89876 |
| DIMENSIONS OF LARGEST POOL HQI SCORE: 4=LARGE 3=MODERATE 2=SMALL 1=ABSENT                  | 89877 |
| CHANNEL FLOW STATUS HQI SCORE: 3=HIGH 2=MODERATE<br>1=LOW 0=NO FLOW                        | 89878 |
| BANK STABILITY HQI SCORE: 3=STABLE 2=MODERATELY<br>STABLE 1=MODERATELY UNSTABLE 0=UNSTABLE | 89879 |
| CHANNEL SINUOSITY HQI SCORE: 3=HIGH 2=MODERATE<br>1=LOW 0=NONE                             | 89880 |
| RIPARIAN BUFFER VEGETATION HQI SCORE: 3=EXTENSIVE<br>2=WIDE 1=MODERATE 0=NARROW            | 89881 |
| AESTHETICS OF REACH HQI SCORE: 3=WILDERNESS<br>2=NATURAL AREA 1=COMMON SETTING 0=OFFENSIVE | 89882 |
| HQI TOTAL SCORE                                                                            | 89883 |
| NO FLOW ISOLATED POOL: LARGEST POOL MAX WIDTH (METERS)                                     | 89908 |
| NO FLOW ISOLATED POOL: LARGEST POOL MAX LENGTH (METERS)                                    | 89909 |
| NO FLOW ISOLATED POOL: LARGEST POOL MAX DEPTH (METERS)                                     | 89910 |
| NO FLOW ISOLATED POOL: SMALLEST POOL MAX DEPTH (METERS)                                    | 89911 |
| NO FLOW ISOLATED POOL: SMALLEST POOL MAX WIDTH (METERS)                                    | 89912 |
| NO FLOW ISOLATED POOL: SMALLEST POOL MAX LENGTH (METERS)                                   | 89913 |
| NO FLOW ISOLATED POOLS: NUMBER OF POOLS EVALUATE                                           | 89914 |
| Habitat EPA EMAP Protocol<br>(Composite, Both, CN)                                         |       |
| BIOLOGICAL DATA (report value of 3012 for Habitat EPA<br>EMAP Protocol)                    | 89888 |

# Table 12: Biological Parameters & Parameter Codes, Sampling Categories & Values (continued)

| Algae Diatoms                                                                                                                |       |  |
|------------------------------------------------------------------------------------------------------------------------------|-------|--|
| (Composite, Both, CN, 93308)                                                                                                 |       |  |
| <b>BIOLOGICAL DATA (report value of 4011 for Algae Diatoms)</b>                                                              | 89888 |  |
| ALGAE SUBSTRATE TYPE (1=ROCKY 2=WOODY 3=SILT/SAND<br>4=COMPOSITE 5=ARTIFICIAL 6=NUTRIENT DIFFUSING)                          | 93304 |  |
| ALGAE SAMPLE TYPE (1=QUALITATIVE SINGLE SUBSTRATE<br>2=QUALITATIVE COMPOSITE 3=QUANTITATIVE 4=PERCENT<br>SUBSTRATE COVERAGE) | 93303 |  |
| ALGAE HABITAT TYPE SAMPLED (1=RIFFLE 2=RUN 3=GLIDE<br>4=POOL 5=MULTIPLE HABITAT TYPES SAMPLED)                               | 93307 |  |
| ALGAE AREA SAMPLED, QUANTITATIVE (M2)                                                                                        | 93308 |  |
| ALGAL DATA REPORTING UNITS (1=CELLS/ML 2=CELLS/M2<br>3=CELLS/SAMPLE 4=OBSERVED)                                              | 93314 |  |
| NUMBER OF DIATOM AND SOFT ALGAE GENERA IN SAMPLE                                                                             | 93301 |  |
| NUMBER OF ALGAL DIVISIONS IN SAMPLE                                                                                          | 93302 |  |
| NUMBER DIATOM VALVES COUNTED                                                                                                 | 93316 |  |
| NUMBER DIATOM TAXA                                                                                                           | 93318 |  |
| DIATOM SHANNON DIVERSITY                                                                                                     | 93320 |  |
| DIATOM POLLUTION TOLERANCE INDEX                                                                                             | 93323 |  |
| DIATOM SENSITIVE/INTOLERANT, %                                                                                               | 93343 |  |
| ALGAE, DOMINANT 3 TAXA, %                                                                                                    | 93333 |  |
| ALGAE MOTILE TAXA, %                                                                                                         | 93335 |  |
| ALGAE TOLERANT TAXA, %                                                                                                       | 93337 |  |
| CYMBELLA GROUP RICHNESS                                                                                                      | 93340 |  |
| FRAGILARIA GROUP RICHNESS                                                                                                    | 93344 |  |
| Algae Soft Benthic Not Diatoms<br>(Composite, Both, CN, 93308)                                                               |       |  |
| BIOLOGICAL DATA (report value of 4012 for Algae Soft<br>Benthic Not Diatoms)                                                 | 89888 |  |
| ALGAE SUBSTRATE TYPE (1=ROCKY 2=WOODY 3=SILT/SAND<br>4=COMPOSITE 5=ARTIFICIAL 6=NUTRIENT DIFFUSING)                          | 93304 |  |
| ALGAE SAMPLE TYPE (1=QUALITATIVE SINGLE SUBSTRATE<br>2=QUALITATIVE COMPOSITE 3=QUANTITATIVE 4=PERCENT<br>SUBSTRATE COVERAGE) | 93303 |  |

 Table 12: Biological Parameters & Parameter Codes, Sampling Categories & Values (continued)

| Algae Soft Benthic Not Diatoms                                                                 |       |
|------------------------------------------------------------------------------------------------|-------|
| (Composite, Both, CN, 93308)                                                                   |       |
| ALGAE HABITAT TYPE SAMPLED (1=RIFFLE 2=RUN 3=GLIDE<br>4=POOL 5=MULTIPLE HABITAT TYPES SAMPLED) | 93307 |
| ALGAE AREA SAMPLED, QUANTITATIVE (M2)                                                          | 93308 |
| ALGAL DATA REPORTING UNITS (1=CELLS/ML 2=CELLS/M2 3=CELLS/SAMPLE 4=OBSERVED)                   | 93314 |
| NUMBER OF DIATOM AND SOFT ALGAE GENERA IN SAMPLE                                               | 93301 |
| NUMBER OF ALGAL DIVISIONS IN SAMPLE                                                            | 93302 |
| NUMBER OF CELLS/UNITS COUNTED, BENTHIC ALGAE                                                   | 93346 |
| CHLOROPHYLL A, BENTHIC                                                                         | 93347 |
| ASH FREE DRY WEIGHT                                                                            | 93348 |
| ALGAL CELL/UNIT DENSITY                                                                        | 93349 |
| Algae Phytoplankton<br>(Composite, Both, CN, 93403, 93400)                                     |       |
|                                                                                                |       |
| BIOLOGICAL DATA (report value of 4013 for Algae<br>Phytoplankton)                              | 89888 |
| ALGAL DATA REPORTING UNITS (1=CELLS/ML 2=CELLS/M2 3=CELLS/SAMPLE 4=OBSERVED)                   | 93314 |
| NUMBER OF DIATOM AND SOFT ALGAE GENERA IN SAMPLE                                               | 93301 |
| NUMBER OF ALGAL DIVISIONS IN SAMPLE                                                            | 93302 |
| PLANKTON SAMPLE TYPE (1=TOW 2=GRAB 3=DEPTH INTEGRATED)                                         | 93390 |
| PLANKTON SAMPLE VOLUME COLLECTED                                                               | 93392 |
| TOW TYPE (1=VERT., 2=HORIZ.)                                                                   | 89938 |
| PLANKTON SAMPLE TOW LENGTH (METERS)                                                            | 93400 |
| PLANKTON SAMPLE TOW TIME (MINUTES)                                                             | 93403 |
| PHYTOPLANKTON DENSITY, TOTAL (CELLS/ML)                                                        | 95999 |
| DIVERSITYMACROPHYTES                                                                           | 99300 |
| PHYTOPLANKTON SAMPLEDNO ORGANISMS PRESENT                                                      | 93305 |
| PHYTOPLANKTONUNKNOWN ORGANISM (#/SAMPLE)                                                       | 93306 |

 Table 12: Biological Parameters & Parameter Codes, Sampling Categories & Values (continued)

| Algae Visual Algal Assessment                                                                       |       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| (Composite, Both, CN)                                                                               |       |  |  |  |  |
| BIOLOGICAL DATA (report value of 4014 for Algae Visual<br>Algal Assessment)                         | 89888 |  |  |  |  |
| ALGAE SUBSTRATE TYPE (1=ROCKY 2=WOODY 3=SILT/SAND<br>4=COMPOSITE 5=ARTIFICIAL 6=NUTRIENT DIFFUSING) | 93304 |  |  |  |  |
| ALGAE HABITAT TYPE SAMPLED (1=RIFFLE 2=RUN 3=GLIDE<br>4=POOL 5=MULTIPLE HABITAT TYPES SAMPLED)      | 93307 |  |  |  |  |
| ALGAL DATA REPORTING UNITS (1=CELLS/ML 2=CELLS/M2 3=CELLS/SAMPLE 4=OBSERVED)                        | 93314 |  |  |  |  |
| ALGAL MAT (1=ABSENT 2=SLIME 3=VISIBLE 4=MEASUREABLE)                                                | 93405 |  |  |  |  |
| ALGAL MAT THICKNESS                                                                                 | 93407 |  |  |  |  |
| BENTHIC ALGAE, PERCENT COVER                                                                        | 93409 |  |  |  |  |
| GREEN FILAMENTOUS ALGAE, PERCENT COVER                                                              | 93422 |  |  |  |  |
| BLUEGREEN, PERCENT COVER                                                                            | 93424 |  |  |  |  |
| DIATOM, PERCENT COVER                                                                               | 93426 |  |  |  |  |
| RED ALGAE, PERCENT COVER                                                                            | 93429 |  |  |  |  |
| FLOATING MAT/SCUM PERCENT COVER                                                                     | 93463 |  |  |  |  |
| Zooplankton                                                                                         |       |  |  |  |  |
| (Composite, Both, CN, 93403, 93400)                                                                 |       |  |  |  |  |
| BIOLOGICAL DATA (report value of 501 for Zooplankton)                                               | 89888 |  |  |  |  |
| PLANKTON SAMPLE TYPE (1=TOW 2=GRAB 3=DEPTH INTEGRATED)                                              | 93390 |  |  |  |  |
| PLANKTON SAMPLE VOLUME COLLECTED                                                                    | 93392 |  |  |  |  |
| TOW TYPE (1=VERT., 2=HORIZ.)                                                                        | 89938 |  |  |  |  |
| PLANKTON SAMPLE TOW LENGTH (METERS)                                                                 | 93400 |  |  |  |  |
| PLANKTON SAMPLE TOW TIME (MINUTES)                                                                  | 93403 |  |  |  |  |

# Chapter 7 – Data Reporting

Surface water quality monitoring data are reported to the Texas Commission on Environmental Quality by two methods: manual data entry and flat-file datasets. This chapter defines the method and formats used when submitting data to TCEQ for upload into the SWQMIS database.

# **TCEQ Region and Central Office Staff**

The TCEQ staff authorized to enter sample data into the database use the data entry screens in the Sampling Module of the SWQMIS database. The creation of Sample Events and Sample Sets along with the entry of field parameter data are required to be reported electronically to the DM&A Data Manager via SWQMIS within 45 days of the sampling event. When data is entered and published by TCEQ staff, SWQMIS assigns the data the status of "pre-production data management" (PREDM).

# Laboratory Information Management System (LIMS)

The TCEQ Houston Laboratory and other contracted laboratories perform laboratory analyses requested by TCEQ Regional Office staff. Surface water quality monitoring samples are sent to the laboratories with SWQMIS-generated Request for Analysis (RFA) forms. The laboratory reports this data to DM&A using the LIMS file format provided in Appendix A, and DM&A loads the data into the database. Upon loading, the data are assigned PREDM status in SWQMIS. DM&A staff review the lab report and the electronic data for completeness, appropriateness, and metadata accuracy (including codes, depth, date, time, tag number, and station ID), before publishing the data as Production (PROD) data in the SWQMIS database. Please see the "LIMS File Format" section of this chapter (p. 6) for information on how to structure the data files for LIMS Loader data.

## **TCEQ Partners and Contractors**

#### **Data Deliverables**

Two ASCII (DOS) pipe-delimited text files must be provided to the TCEQ Project Manager for inclusion in SWQMIS. These two files must follow the format described below (examples are provided later in this chapter). These files are related to each other through the Tag ID, which is described in Chapter 6. There is a one-to-many relationship between the Event file and the Results file with multiple records in the Results file for each Event (monitoring/sampling event). For purposes of the upload files, an Event record is defined as a unique sampling regime conducted at a specific date, place (station ID and depth), and time. For example, an Event record describes the collection of a "metals in sediment" sample at station 12049 on 5 February 2014, 13:00 hours. Water, tissue, sediment, and distinct types of biological (nekton, habitat, benthic) samples are all considered separate Event records in the Event file of the flat-file loader, even when collected at the same time and location (i.e., during the same Sample Event). Each Event record must have a unique Tag ID. Instantaneous field measurements (grabs) collected immediately before or after 24-hour monitoring are also considered separate Event records and the submitting entity may not report it under the same Tag ID as the 24-hour data. Fields marked as Data Value Required = "Y" must be completed prior to data submission.

## Sample/Event File Format

Each record in the Events File consists of the fourteen fields described below; fields may or may not contain data. Fields must be in the order listed in the table below. For a grab sample, if a field is only appropriate for composite sample (noted with a "C" in the Data Value Required column), the field should still be present for that record in the Events file, but left blank. The fields marked with a "Y" in the Data Value Required column must contain either a text or numeric value for every sample collected. Except for the 'Comment' field, these fields must contain only

numeric or alpha characters, as designated in field descriptions. No punctuation (such as quotation marks, commas, periods, etc.) can be accepted.

| Field Name | Data Field<br>Required | Length | Data<br>Value<br>Required | Description                                                                                                                                                                                                                                                                                                                                                  |
|------------|------------------------|--------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tag ID     | Y                      | 71     | Y                         | Key field that is common to both the Events and<br>Results file. Each Tag ID is unique in the Events<br>file. The first 1- or 2-digits must match the Tag<br>Prefix assigned to the submitting agency.                                                                                                                                                       |
| Station ID | Y                      | 5      | Y                         | A unique 5-digit code that identifies each sampling<br>station. This number is generated by the database in<br>response to the submission of a SLOC Request to<br>DM&A (see SWQM DMRG Chapter 3). Data<br>collected at new stations cannot be loaded into<br>SWQMIS until the station ID has been assigned by<br>TCEQ DM&A.                                  |
| End date   | Y                      | 10     | Y                         | Date the sample was collected. Reported as MM/DD/YYYY. Leading zeros are required for month and day. For composite samples this is the last date a sample or measurement was collected.                                                                                                                                                                      |
| End time   | Y                      | 5      | Y                         | The time the sample was collected. Reported in military (24-hour, MM:HH) format. For composite samples, this is the time the last sample was collected. Leading zeros are required where applicable (for example, 09:30).                                                                                                                                    |
| End depth  | Y                      | 6      | Y                         | The depth in meters at which the sample was collected. For composite samples, the deepest depth at which the sample was collected.                                                                                                                                                                                                                           |
| Start date | Y                      | 10     | С                         | This field requires a value for composite samples<br>only and is the sample collection start date. If this<br>field is not blank, then Start time, Start depth,<br>Category, and Type must also contain a data value.<br>If a sample is not a composite, this field should be<br>blank. Reported as MM/DD/YYYY.                                              |
| Start time | Y                      | 5      | С                         | This field requires a value for composite samples<br>only and is the sample collection start time. If this<br>field is not blank, then Start date, Start depth,<br>Category, and Type must also contain a data value.<br>If a sample is not a composite, this field should be<br>blank. Leading zeros are required where applicable<br>(for example, 09:30). |

| Field Name           | Data Field<br>Required | Length | Data<br>Value<br>Required | Description                                                                                                                                                                                                                                                                                                                                                            |
|----------------------|------------------------|--------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start depth          | Y                      | 6      | С                         | This field requires a value for composite samples<br>only and is the depth nearest the surface for sample<br>collection (in meters). If this field is not blank, Start<br>time, Category, and Type must also contain a data<br>value. If a sample is not a composite, this field<br>should be blank.                                                                   |
| Category             | Y                      | 1      | С                         | This field requires a value for composite samples<br>only and should correspond to the following codes:<br>T=time, S=space, B=both, and F=flow weight. If<br>this field is not blank, then Start date, Start time,<br>Start Depth, and Type must also contain a data<br>value. If a sample is not a composite, this field<br>should be blank.                          |
| Туре                 | Y                      | 2      | С                         | This field requires a value for composite samples<br>only and should correspond to the following codes:<br>## = number of grabs in composite, $CN =$<br>continuous, GB = number of grabs is unknown. If<br>the data value is a single digit, a leading zero is<br>required (for example, 3 ="03"). If a sample is not a<br>composite, this field should be left blank. |
| Comment              | Y                      | 135    | Ν                         | This is the text field for any observational data<br>available for the event. If there is no observational<br>data, this field should be left blank.                                                                                                                                                                                                                   |
| Submitting<br>Entity | Y                      | 2      | Y                         | The code that indicates the entity responsible for<br>submitting data to the TCEQ, usually the QAPP<br>holder. Valid codes are assigned by the TCEQ, and<br>presented in the SWQM DMRG Chapter 4.<br>(Formerly known as Source Code 1).                                                                                                                                |
| Collecting<br>Entity | Y                      | 2      | Y                         | The code that indicates the entity actually collecting<br>samples in the field. Valid codes are assigned by the<br>TCEQ. This document lists these codes in the<br>SWQM DMRG Chapter 4. (Formerly known as<br>Source Code 2).                                                                                                                                          |
| Monitoring<br>Type   | Y                      | 2      | Y                         | The code used to identify the type of sampling that<br>is being reported in the dataset for a unique tag.<br>TCEQ assigns valid codes, and they are listed in the<br>SWQM DMRG Chapter 4. (Formerly known as<br>Program Code).                                                                                                                                         |

<sup>1</sup> Tag ID can accept up to nine characters. However, seven characters is the norm.

## The generic format of the Sample/Event file:

Tag|Station Id|End Date|End Time|End Depth|Start Date|Start Time|Start Depth|Category|Type|Comment|Submitting Entity|Collecting Entity|Monitoring Type

#### Example records for a Sample/Event file:

*Grab:* 0012345|16789|10/11/2013|14:30|0.3|||||||Water green|LC|LC|RT

Composite:

0012345|16789|10/11/2013|09:45|0.6|10/11/2013|10:00|0.3|S||Sunny and warm|LC|LC|RT

Profile:

 $L150001|15301|01/05/2014|14{:}15|0.3|||||||LC|LC|RT$ 

 $L150002|15301|01/05/2014|14{:}16|6|||||||LC|LC|RT$ 

L150003|15301|01/05/2014|14:17|9||||||LC|LC|RT

24 Hour:

R150001|15301|01/15/2013|14:15|0.3|01/14/2013|14:00|0.3|T|24||LC|LC|CS

Tissue:

0012345|13270|12/12/2003|11:15|2|12/12/2003|14:15|0.3|B|04|Coots feeding|LC|LC|RT

#### **Results File Format**

The Results file may have one or multiple records for each Event record. Each record consists of the nine fields described below; fields may or may not contain data. Fields must be in the order listed in the table below. If a value for the field is not appropriate, the blank field must still be present for the record in the Results file. These fields must contain only numeric or alpha characters, as designated in field descriptions. No punctuation (such as quotation marks, commas, periods, etc.) can be accepted.

| Field Name        | Data Field<br>Required | Length | Data<br>Value<br>Required | Description                                                                                                                                                                                                                                                                                                   |
|-------------------|------------------------|--------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tag ID            | Y                      | 71     | Y                         | Unique code connecting the water quality sample<br>results to a Tag ID in the Events file. The same<br>code is assigned to all results that came from the<br>same water quality sample. Therefore, there will<br>be many results with the same Tag ID, which all<br>match a single record in the Events file. |
| End date          | Y                      | 10     | Y                         | The date the sample was collected. Reported as MM/DD/YYYY. This date needs to match the End date in the Events file for the specified Tag ID. Leading zeros are required for month and day.                                                                                                                   |
| Parameter<br>Code | Y                      | 5      | Y                         | The 5-digit parameter code that identifies the substance being measured. Leading zeros are required where applicable (for example, 00400).                                                                                                                                                                    |
| GT/LT             | Y                      | 1      | N                         | If the value determined is a "<" value, report "<"<br>in this field. If the value determined is a ">" value,<br>then report a ">" in this field. Otherwise, leave<br>blank.                                                                                                                                   |

| Field Name        | Data Field<br>Required | Length | Data<br>Value<br>Required | Description                                                                                                                                                                                                                                                                                                                                        |
|-------------------|------------------------|--------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Value             | Y                      | 8      | Y                         | This is the level or test result of the substance<br>being measured and is reported in the units<br>defined in the parameter code description found in<br>SWQMIS.                                                                                                                                                                                  |
| LOD               | Y                      | 8      | Ν                         | This is the Limit of Detection for this parameter.                                                                                                                                                                                                                                                                                                 |
| LOQ               | Y                      | 8      | Ν                         | This is the Limit of Quantitation for this parameter.                                                                                                                                                                                                                                                                                              |
| Qualifier<br>Code | Y                      | 2      | Ν                         | Formerly referred to as Remark Code. See the SWQM DMRG Chapter 10 for a list of codes and their definitions.                                                                                                                                                                                                                                       |
| Verify Flag       | Y                      | 1      | N                         | If Value is outside the minimum/maximum range<br>defined in SWQMIS (SWQM DMRG Chapter 2),<br>the data submitter must place a "1" in this field to<br>indicate that s/he has verified the data value. If the<br>value cannot be verified, the submitting entity<br>must add a qualifier code (SWQM DMRG<br>Chapter 10) in the Qualifier Code field. |

<sup>1</sup>Tag ID can accept up to nine characters. However, seven characters is the norm.

# The generic format of the Results file:

Tag|End Date|Parameter|GT/LT|Value|LOD|LOQ|Qualifier Code|Verify Flag

# Example records for a Results file:

*Grab:* 0012345|10/11/2013|00061|<|1|||| 0012345|10/11/2013|00940||53|||BL|

Composite:

0012345|10/11/2013|00221||24||||

0012345|10/11/2013|00209||18||||

0012345|10/11/2013|00210||22||||

0012345|10/11/2013|00211||14|||PE|1

# Profile:

 $L150001|01/14/2014|00010||18.3|||| \\ L150002|01/14/2014|00010||17.6|||J|1$ 

24 Hour: R150001|01/02/2014|00216||7.9|||| R150001|01/02/2014|00220||24|||| R150001|01/02/2014|00218||11.5|||| *Tissue:* 0012345|12/12/2013|74990||016|||| 0012345|12/12/2013|74995||59|||| 0012345|12/12/2013|81615||1|||| 0012345|12/12/2013|00039||92||||1 0012345|12/12/2003|84100||2|||SP|

# **LIMS File Format**

- This file format is specifically for laboratories (the Houston TCEQ Lab as well as other contract labs) that submit data directly to a DM&A Data Manager. *All TCEQ partners and contractors should submit data in the event and results file format previously described in this chapter*.
- Fields are pipe ("|") delimited.
- Alpha fields do *not* contain quotation marks.
- Fields cannot contain the pipe character.
- Fields must be in the order specified.
- Files do not contain a header row.

# LIMS File Format Example

# LIMS Sample/Event File

| Field Name                    | Data Field<br>Required | Length                      | Data Value<br>Required | Description                                                                                                                                                                                                              |
|-------------------------------|------------------------|-----------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample<br>Number/Lab ID       | Y                      | Up to 10<br>characters      | Y                      | This is the ID<br>assigned to the<br>sample by the lab.                                                                                                                                                                  |
| Station ID                    | Y                      | Consistent with station IDs | Y                      | Must be a valid<br>existing station ID<br>in SWQMIS.                                                                                                                                                                     |
| Tag ID                        | Y                      | Up to 30<br>characters      | Y                      | This is the RFA number.                                                                                                                                                                                                  |
| Sample Date/<br>Time          | Y                      | Exactly 17<br>characters    | Y                      | DD-MON-YYYY<br>HH:MM (e.g. 10-<br>DEC-2005 20:05)                                                                                                                                                                        |
| Sample Collected<br>By (Name) | Y                      | Up to 40<br>characters      | Y                      | This is the<br>SWQMIS user ID<br>for the SWQM FO<br>who collected the<br>sample.                                                                                                                                         |
| Region ID                     | Y                      | Up to 2 characters          | Y                      | This must be a<br>number. Region<br>ID should be<br>provided on RFA<br>by collector. Valid<br>region numbers<br>are: 1, 2, 3, 4, 5, 6,<br>7, 8, 9, 10, 11, 12,<br>13, 14, 15, 16, or<br>99 (99=Central<br>Office staff). |

| Data Field                       |          |                          | Data Value                | Description                                                                                                                                                                                                                            |
|----------------------------------|----------|--------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Field Name                       | Required | Length                   | Required                  | Description                                                                                                                                                                                                                            |
| End Collection<br>Depth          | Y        | Up to 10<br>characters   | Y                         | The depth in<br>meters at which<br>the sample was<br>collected. For<br>composite<br>samples, the<br>deepest depth at<br>which the sample<br>was collected.<br>Must be a number.                                                        |
| Composite Type                   | Y        | Up to 2 characters       | Composite<br>Samples Only | The number of<br>grabs that<br>comprise a<br>composite sample.<br>May be 00-99, or<br>GB (for unknown<br>number of grabs).<br>If leading zero<br>isn't included<br>(e.g., "2"), the<br>system will still<br>accept it.                 |
| Composite<br>Category            | Y        | Exactly 1<br>character   | Composite<br>Samples Only | Use one of the<br>following codes<br>that represent the<br>category of<br>composite<br>sampling (only<br>used for<br>composite<br>samples): "T"<br>(time), "S"<br>(space), "B" (both<br>time and space),<br>or "F" (flow<br>weighted). |
| Start Date/Time                  | Y        | Exactly 17<br>characters | Composite<br>Samples Only | DD-MON-YYYY<br>HH:MM (e.g. 10-<br>DEC-2005 20:05)<br>This is the start<br>date/time of<br>composite<br>samples.                                                                                                                        |
| Start Sample<br>Collection Depth | Y        | Up to 10<br>characters   | Composite<br>Samples Only | This is the start<br>depth (only used<br>for composite<br>samples). It must<br>be a number.                                                                                                                                            |

| Field Name              | Data Field<br>Required | Length                      | Data Value<br>Required | Description                                                                                                                                                  |
|-------------------------|------------------------|-----------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Submitting Entity       | Y                      | Exactly 2<br>characters     | Y                      | This is the entity<br>submitting the<br>data. Valid codes<br>are assigned by<br>the TCEQ, and<br>presented in the<br>SWQM DMRG<br>Chapter 4.                 |
| Collecting Entity       | Y                      | Exactly 2<br>characters     | Y                      | This is the entity<br>collecting the<br>data. Valid codes<br>are assigned by<br>the TCEQ, and<br>presented in the<br>SWQM DMRG<br>Chapter 4.                 |
| Monitoring Type         |                        | Exactly 2 – 4<br>characters | Yes                    | This indicates the<br>type of sampling<br>being conducted.<br>Valid codes are<br>assigned by the<br>TCEQ, and<br>presented in the<br>SWQM DMRG<br>Chapter 4. |
| Quality Control<br>Type |                        | Exactly 1<br>character      | No                     | Code indicating<br>the type of QC<br>sample, if<br>applicable.                                                                                               |

**The generic format of the LIMS Sample/Event file:** Sample Number/Lab ID |Station Id|Tag ID|End Date End Time|Collector|End Depth|Composite Type|Composite Category|Start Date Start Time| Start Depth|Submitting Entity|Collecting Entity|Monitoring Type|Quality Control Type

# LIMS Results File

| Field Name               | Data Field<br>Required | Length                   | Data Value<br>Required | Description                                                                                                                                            |
|--------------------------|------------------------|--------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample<br>Number/Lab ID  |                        | Up to 10<br>characters   | Yes                    | This is the ID assigned to<br>the sample by the lab.<br>This field must match the<br>associated Sample<br>Number/Lab ID provided<br>in the Event File. |
| Parameter Code           |                        | Exactly 5<br>characters  | Yes                    | Leading zeros are kept<br>by the system. Include<br>the leading zeros in the<br>submitted Results File.                                                |
| Result                   |                        | Up to 10<br>characters   | Yes                    | Must be either all<br>numeric, "<" followed<br>by a number, or ">"<br>followed by a number.                                                            |
| Data Qualifier<br>Code   |                        | Exactly 2<br>characters  | No                     | Valid data qualifier code                                                                                                                              |
| MDL                      |                        | Up to 8 digits           | No                     | This is the Method<br>Detection Limit. The<br>values may range from 0<br>to 99,999,999.                                                                |
| RL                       |                        | Up to 8 digits           | No                     | This is the Reporting<br>Limit. The values may<br>range from 0 to<br>99,999,999.                                                                       |
| Note/Comment             |                        | Up to 4000<br>characters | No                     | Notes/comments are<br>required if there was a<br>note/comment<br>necessitated by the<br>laboratory                                                     |
| Person Doing<br>Analysis |                        | Up to 50<br>characters   | Yes                    | This is the first initial<br>and the full last name of<br>the laboratory analyst                                                                       |

# The generic format of the LIMS Results file:

Sample Number/Lab ID | Parameter| Result| Qualifier Code|MDL|RL| Comment|Lab Analyst

# <u> Chapter 8 – Data Review</u>

All data must be verified prior to its submittal to the SWQMIS database. An example checklist that may assist with data verification is provided <u>here</u>.

Contractors submitting data through TCEQ water programs must use the procedures, checklists, and/or forms required by their contracts (for example, TMDL data review checklists, CRP data summaries, or NPS data review checklists) to document data review.

# **SWQMIS Data Loading Report**

The DM&A Team assists in data verification and validation prior to loading into SWQMIS. The SWQMIS data loader is a tool that performs checks of data flat files. The SWQMIS data loader in the Test environment of SWQMIS can be used by contract data submitters to test their data deliverables prior to submitting the data to their TCEQ project manager. This data loader tool helps the data provider confirm that the dataset is correct in format and complete in content. The data checks also ensure that DM&A can upload the data to the Production environment of SWQMIS without errors. The loading tool also produces a summary report used for further diagnostics of any errors. Project managers can use this report for secondary data review.

# Data Dictionary for the SWQMIS Data Loading Validator Report

# Submitting and Collecting Entities and Monitoring Types

This section of the report identifies all the combinations of Submitting Entity, Collecting Entity, and Monitoring Type Codes reported in the dataset, and descriptions of the codes are provided.

# **Frequency of Parameter Occurrence**

This section of the report identifies the parameter codes, parameter descriptions, and the number of times the parameter appears in the dataset. Also includes the minimum "less-than" value, maximum "less-than" value, minimum "greater-than" value, maximum "greater-than" value, minimum quantifiable value, maximum quantifiable value, and mean values from the dataset.

# **Stations in Dataset**

This section of the report identifies sampled station IDs. Descriptions are provided for each station, along with the Basin ID and number of sampling events for each station.

# **Outliers (Requires verification prior to loading.)**

This section of the report identifies the tag IDs, station descriptions, end dates, parameter codes, less than/greater than symbols, and values reported in the dataset that fall outside the predefined screening levels. The screening levels are listed in this section of the report as the minimum and maximum. If the minimum and/or maximum screening values need to be revised, complete a Parameter Code Request and submit to DM&A according to the process outlined in Chapter 2 in the SWQM DMRG.

# **Historical Basin Comparison**

This section of the report provides each measurement that does not fall between the historical minimum and maximum value for a parameter in a basin. Dataset values outside the historical data levels for the basin-parameter code combination along with Tag ID, basin ID, station ID, parameter code, less-than/greater-than symbol, and the reported value are retrieved from the provided dataset. Historical minimum value, historical maximum value, historical mean value, and historical number of samples reported for the basin-parameter code combination are calculated using the most recent data (5-year period) currently in SWQMIS in that basin for that parameter.

# **Historical Station Comparison**

This section of the report provides each measurement that does not fall between the historical minimum and maximum value for a parameter at that station. Tag ID, station ID, station description, parameter code, less-than/greater-than symbol, and the reported value are retrieved from the provided dataset. Historical minimum value, historical maximum value, historical mean value, and historical number of samples reported for the station-parameter code combination are calculated using the most recent data (5-year period) currently in SWQMIS at that station for that parameter.

# **Highest Values per Parameter**

This section of the report provides the top ten highest values for each parameter code within the data set. Reported fields include station ID, station description, end date, end time, parameter code, less-than/greater-than symbols, value, and end depth.

# Lowest Values per Parameter

This section of the report provides the top ten lowest values for each parameter code within the data set. Reported fields include station ID, station description, end date, end time, parameter code, less-than/greater-than symbols, value, and end depth.

# **Data Management Review**

In addition to the verification checks automatically performed by the SWQMIS data loading tool, TCEQ data managers also perform verification and validation checks using output from the Data Loading Validator Report. Using the report as a guide, data managers compare the quality assurance (QA) document associated with the data load (QAP, QAPP) to the report output. The data manager verifies that the data are intended to be stored in SWQMIS and that the proper signatures appear on the QA document. The data manager then verifies that the sampling dates coincide with the effective date of the QA document. The use of the correct Tag Prefix is verified, as well as the use of proper Submitting Entity, Collecting Entity, and Monitoring Type codes. The data managers also verify all station IDs and parameter codes in the Data Loading Validator Report against stations and parameters described in the project QA document. Finally, the data managers ensure that the data submitter has verified all outliers in the data set. In the event that the data managers find discrepancies between the data set and the quality assurance document, the data managers will contact the TCEQ Project Manager for resolution.

# Data Not Adhering to QA Documents

If submitted data is identified as not meeting the project's data quality objectives as stated in the project QAPP, the data manager will return the data set to the TCEQ Project Manager. The data manager will provide a Water Quality Planning Division (WQPD) Data Resubmittal Form to the project manager. It is the project manager's responsibility to complete the form detailing any excursions of the report from the QA document. The project manager will work with the TCEQ QA Specialist to decide on a course of action that addresses the excursion. The project manager will also submit to data management any relevant documentation detailing the excursion from the QA document; often this documentation is recorded directly on the Data Resubmittal Form. When the agreed-to course of action is complete, the project manager, QA specialist, and data manager all sign the form. The project manager resubmits the data set, the Data Resubmittal Form, and any necessary documentation to the data manager. Once the data has been successfully loaded into SWQMIS, the Data Resubmittal Form will also be stored in the database to accompany the project's QA document(s). The Data Resubmittal process may also be initiated by the project manager upon preliminary review of submitted data.

# <u> Chapter 9 – Data Corrections</u>

For corrections to data in the SWQMIS database, a <u>SWQM Data Correction Request (DCR)</u> form is submitted to DM&A. The data correction procedures in this chapter have been developed to maintain and document the integrity and reliability of the data in the SWQMIS.

# **SWQM Data Correction Request Description**

To request a data correction in SWQMIS, TCEQ staff submit a SWQM Data Correction Request form to the DM&A data managers. Omissions of information on the form may delay completion of a request and/or require a DM&A data manager to contact the requestor for more information. Requests may be submitted either by standard mail or e-mail. See the Documentation section below for additional information about specific types of requests.

# **Data Correction Process**

In general, it is the responsibility of the individual or program that submitted the data to prepare a Data Correction Request form when necessary.

Submitting entities (contractors or cooperators) should complete and submit a DCR form to their TCEQ project manager for corrections to their own data. They may also work cooperatively with their TCEQ project manager to request corrections to data other groups have submitted. The project manager forwards DCR forms to the DM&A data managers for processing.

TCEQ staff who discover errors in their own data should submit a completed DCR form directly to their program's DM&A data manager. TCEQ staff should contact the appropriate TCEQ project manager to inquire about other data they believe to be incorrect.

Upon receipt of the DCR form, DM&A data managers review the request and perform any necessary impact analysis. The impact analysis may require obtaining further information from the requestor or other affected parties.

Once the analysis is complete and a course of action selected, a DM&A data manager either completes the data correction manually or replies to the DCR submitter if an alternative decision is made.

The DM&A data manager sends a confirmation of the DCR completion to the requestor via email.

# **Data Correction Required Information**

# **Action Code**

Record in the Action Code column the appropriate code for either 'Add', 'Flag', or 'Correct' (A, F, or C).

A = Add; use this code to add information to a sample existing in the database.

F = Flag; use this code to qualify data with a Data Qualifier Code (see App. E).

C = Correction; use this code to correct a value existing in the database. If a correction is required, all fields on the Existing line and the necessary fields on the Correction line must be filled out.

# Tag ID

Record in the Tag ID column the Tag ID or Sample Set ID of the sample to be corrected.

# Station ID

Record in the Station ID column the Station ID that identifies the location of the sample.

# **End Date**

Record in the End Date column the End Date of the sample in mm/dd/yyyy format.

# **End Time**

Record in the End Time column the End Time of the sample in 24-hour format.

# **End Depth**

Record in the End Depth column the End Depth of the sample.

# **Data Source**

Record in the Data Source columns the data source of the sample: Submitting Entity, Collecting Entity, and Monitoring Type.

# **Parameter Code**

Record in the Parameter Code column the parameter code for the sample.

# Value

Record in the Value column the measured value in the sample.

# Data Qualifier

Provide any data qualifier code applicable to the value.

# Verify Flag

If the value is outside the database minimum-maximum range for this parameter code, verify that the value is accurate by entering a "1".

# Documentation

# Lab Errors

When the analyzing laboratory reports errors or necessary corrections, documentation from the lab will be considered sufficient documentation to proceed with a correction without an explicit request from the FOD sample collector.

# **Large-Volume Data Correction Requests**

When requesting corrections to large numbers of records (more than 25), DM&A requires that requestors submit an electronic list of the records to be updated in addition to the DCR form. This is to protect data integrity and to document the intent of the request with complete clarity. This electronic list should include all fields on the DCR form (Tag ID, Station ID, End Date, End Time, End Depth, Data Source information, plus Parameter Code, and Value if applicable). Spreadsheets (such as Excel files) and pipe-delimited text files are acceptable formats. Contact DM&A with any questions regarding these instructions or the data correction process.

# **Chapter 10 – Data Qualification**

Data stored in SWQMIS must be collected or acquired under a TCEQ-approved Quality Assurance Plan (QAP) or Quality Assurance Project Plan (QAPP). Each quality assurance (QA) document sets forth Data Quality Objectives (DQOs) for the data generated by the monitoring project. These DQOs establish the minimum data quality acceptable for the project. However, because SWQMIS is an archival repository for the agency's surface water quality data, any data stored may be used by a variety of users with diverse purposes. Because of this, it is strongly encouraged that all data is stored in SWQMIS, and any data not meeting the DQOs set forth in the quality assurance document be qualified accordingly<sup>1</sup>. Data then becomes readily available in SWQMIS for all system users. The system users may then determine whether the data are of sufficient quality for their intended use.

Data Management and Analysis (DM&A) qualifies data that has not met DQOs using the data qualifier codes listed in Appendix E of this document. If a program area discovers data stored in SWQMIS that should be qualified, a <u>Data Correction Request</u> should be submitted to DM&A so that the qualifier can be added in SWQMIS. DM&A will consult with the program area that originally submitted the data before qualifying that data.

Instructions for qualifying records associated with Field Blank, Equipment Blank and Field Split QC failures are provided on the following page. A list of Data Qualifier Codes is provided in Appendix E of the DMRG.

<sup>1</sup> Data should be submitted to SWQMIS in accordance with the quality assurance document under which the data is collected. Not all QA documents allow qualified data to be submitted to SWQMIS.

# SWQM Program Quality Control Sample Validation and Qualification

The Quality Assurance Advisory Committee has adopted new validation procedures for Field and Equipment Blank Quality Control (QC) failures and Field Split QC failures. DM&A staff will use this procedure when validating laboratory data submitted from the SWQM Program.

# **Field Blank QC Failure**

1. At time of validation, the data manager identifies the type of analysis that was performed on the Field Blank (FB).

Note: Field Blanks are required for total metals in water samples and are optional for other types of monitoring (per SWQM Procedures Manual: Vol I).

- 2. If the sample is a total metals in water sample, the data manager identifies the associated ambient sample for each FB QC failure and qualifies the parametric results in the associated ambient sample's Sample Set.
- 3. If the sample is not a total metals in water sample, the data manager determines the date the sample was collected.
- 4. The data manager then requests a copy of the field notebook for that day from the appropriate region.
- 5. Once the data manager receives the copy of the field notebook, parametric values are qualified in the Sample Sets for ambient samples collected the same day as the failure with the appropriate data qualifier.

# **Equipment Blank QC Failure**

1. At time of validation, the data manager identifies the type of analysis that was performed on the Equipment Blank (EB).

Note: Equipment Blanks are required for dissolved and total metals in water samples and optional for other types of monitoring (per <u>SWQM Procedures Manual: Vol I</u>).

- 2. If the sample is a dissolved or total metal in water sample, the data manager determines the associated ambient sample for each EB QC failure and qualifies the failed parametric values in the associated ambient Sample Set. If the sample is not a dissolved or total metals in water sample, the data manager identifies the date the sample was collected.
- 3. The data manager then requests a copy of the field notebook for that day from the appropriate region.
- 4. Once the data manager receives the copy of the field notebook copy, the parametric values are qualified for samples that are associated with the sample whose equipment blank failed QC. The ambient sample's parametric data for each of those associated samples is also qualified with the appropriate qualifier.

# **Field Split QC Failure**

In the event that a parametric value for a Field Split fails QC, the data manager qualifies the same parametric values in the one Sample Set that is associated with the Field Split.

# <u> Chapter 11 – Database Reports</u>

SWQMIS is capable of generating several types of reports, details of which are provided in this chapter.

Most reports are available in three formats: HTML (formatted report viewed in Internet Explorer), CSV (Comma Separated Values - opens in Excel), and PIPE delimited (ASCII flat text for importing into other applications). All report outputs can be saved to your own computer. Most reports will print from HTML on letter-size paper although you may have to use landscape setting. Reports are generated using Query Builder which allows you to build your query criteria using 'And/Or' logic.

# To access SWQMIS:

<u>https://www80.tceq.texas.gov/SwqmisWeb/</u>(For users inside and outside the TCEQ firewall to access the Production environment of SWQMIS)

<u>https://www8tst0.tceq.texas.gov/SwqmisWeb/</u>(For users inside and outside the TCEQ firewall to access the Test/UAT environment of SWQMIS)

# **Types of Reports**

# **Comparison Information Report**

The Comparison Information Report is used to view information such as assessment screening levels, flow statistics, narrative criteria, numeric criteria, outlier screening values, reference values, or water effect ratios. The report is also useful for checking for site-specific standards or as a general reference tool.

# **Full Raw Data Export**

This report is for extracting ALL data in SWQMIS in a PIPE delimited text format. This report is used by TCEQ staff primarily for posting data to the CRP web site. Once posted to the web, this information is used by CRP and other contractors to update their databases. Users should be aware that this report utilizes a lot of memory and may cause some systems to crash.

# **Monitoring Station Inventory Report**

The Monitoring Station Inventory Report displays any or all attributes of any or all monitoring stations. This is useful for simple viewing or creating reference documents. This report limits output to 1,000 stations.

# **Parameter Inventory Report**

The Parameter Inventory Report allows you to query any number of water quality parameters and their attributes. This is useful for creating reference documents or just viewing parameter attributes like units of measurement, media, or methods used to analyze the parameter.

# **Raw Data Report**

The Raw Data Report generates only a PIPE delimited text file of data from any number of stations in either the traditional two-file Event/Result format or a one-file combined format (Event metadata included on every line with the Result data). This report is primarily for data requests for contractors or cooperators familiar with TCEQ data formats.

# **RFA Status Report**

This report was designed to aid data managers in validating data collected by TCEQ Regional Staff. Generally only data managers use this report.

# **Sampling History Report**

The Sampling History Report generates counts of parameters collected at any number of stations during a specified time period. The report bases the counts on certain parameters that are representative of the type of sampling being counted. For instance, the presence of a result for Aluminum in Water might indicate a 'Metals in Water' sampling event. This report is good for tracking monitoring activities through time. It might also be useful for checking the completeness of a monitoring effort.

# **Selective Data Report**

The Selective Data Report allows retrieval of monitoring data at any number of stations for any number of parameters. The report allows for retrieving data in a 'horizontal' format for easier use in spreadsheets. The report also has a summary function that will provide counts of exceedances (where screening criteria exist) and basic statistics. This report limits output to 100 stations, 1,000 parameters, and 50,000 rows of results.

# **Single Parameter Report**

The Single Parameter Report provides a statistical analysis of measurement results for a single parameter (there are also a few hierarchical parameter sets) at up to 20 stations. The report will display the measurement values, count exceedances of criteria for parameters with numeric criteria (Standards), and provide statistical summaries of the data. There are also several options for marking data by season and month. The data can be easily imported into Excel for graphing.

# **Upload Tracking Info Report**

This report is used to track the various datasets that are loaded by data managers into SWQMIS. Generally only data managers use this report.

# **Biological Raw Data Report**

The Biological Raw Data report allows you to create a text file of event data, results data, or a combination of the two for monitoring stations according to the criteria you specify. If the sample event has at least one biological sample set then the event is treated as a biological event and all the data from this sample event will be generated in the report output. The physical and chemical data associated with the biological event will also be reported in the biological raw data report.

# Sampling Advanced Search

This report is available for data managers to use in validating data collected by TCEQ Regional Staff. The report is also available for TCEQ Regional Staff to search for data already manually entered into SWQMIS and available at Pre-Production status levels Pre-RG and Pre-DM. The report has three checkboxes that allow the user to select for "Only Unvalidated Sample Sets", "Only Outliers" or "Only Acquired Data Sample Sets".

# **Data Requests**

In the event that none of these database reports are appropriate, you can contact the data manager of your program area via email to <u>request data</u>. Please include as much detail about your target dataset as possible in the e-mail. Please use the <u>Standard Data Request Form</u> or <u>Non-Standard Data Request Form</u> when submitting your request. Complete and submit the form using the appropriate <u>instructions</u>.

# Chapter 12 – Biological Data Recording and <u>Reporting</u>

# Introduction

This chapter describes the methods used to report biological data to the SWQMIS database. Prior to sampling for biological data, a Quality Assurance Project Plan (QAPP) or Quality Assurance Plan (QAP) must be in place. The QAPP or QAP must include specific details about scheduled biological monitoring. The QAPP or QAP must include language that communicates that the data deliverable will be submitted only in an electronic format (no paper packets can be submitted). SWQMIS uses the Sample Event and Sample Set structure. This structure is a one-to-many relationship with one Sample Event (the entire biological monitoring event) containing multiple Sample Sets. Each Sample Set represents an individual biological Sampling Category, such as Nekton Electrofishing, Nekton Seining, or Benthic Macroinvertebrates Rapid Bioassessment Qualitative. The sample trip, made up of these individual Sample Sets, is the Sample Event. The following sections provide detail on reporting biological data through manual data entry (TCEQ Regional and Central Office Staff) or through flat file loading (TCEQ Partner Agencies and Contractors).

# **Biological Data Specifics – All Providers**

Each biological Sample Event is composed of Sample Sets. Some of these Sample Sets are biological (Nekton Electrofishing, Nekton Seining, etc) and some are non-biological (24 Hour Data and Routine Chemistry), but all are included in the Sample Event. Each biological Sample Set must include the Parameter Code 89888 which identifies that Sample Set as containing biological data. The value selected for Parameter Code 89888 will be determined by the Sampling Category (see Table 12.1).

To see how parameters are grouped under each sampling category, refer to <u>Chapter 6 of the</u> <u>DMRG Commonly Reported Parameter Codes for Biological Data.</u>

Parameter Code 89888

|                       | Biological Data Reporting                                  |  |  |  |  |
|-----------------------|------------------------------------------------------------|--|--|--|--|
|                       | Values for Sampling Category Parameter Code 89888          |  |  |  |  |
| Value                 | Value Description                                          |  |  |  |  |
| 1011                  | Nekton Summary and Metadata                                |  |  |  |  |
| 1012                  | Nekton Electrofishing                                      |  |  |  |  |
| 1013                  | Nekton Seining<br>Nekton Observation                       |  |  |  |  |
| 1014                  |                                                            |  |  |  |  |
| 1015                  | Nekton Hoop Net                                            |  |  |  |  |
| 1016                  | Nekton Hook and Line                                       |  |  |  |  |
| 1017                  | Nekton Castnet                                             |  |  |  |  |
| 1018                  | Nekton Trawl                                               |  |  |  |  |
| 1019                  | Nekton Water Intake Screen                                 |  |  |  |  |
| 10111 Nekton Gill Net |                                                            |  |  |  |  |
| 2011                  | Benthic Macroinvertebrates Rapid Bioassessment Qualitative |  |  |  |  |

|       | Biological Data Reporting                         |  |  |  |  |
|-------|---------------------------------------------------|--|--|--|--|
|       | Values for Sampling Category Parameter Code 89888 |  |  |  |  |
| Value | Value Description                                 |  |  |  |  |
| 2012  | Benthic Macroinvertebrates Quantitative Protocol  |  |  |  |  |
| 2013  | Benthic Macroinvertebrates Other Protocol         |  |  |  |  |
| 3011  | Habitat TCEQ Parts 1, 2, and 3 Protocol           |  |  |  |  |
| 3012  | Habitat EPA EMAP Protocol                         |  |  |  |  |
| 4011  | Algae Diatoms                                     |  |  |  |  |
| 4012  | Algae Soft Benthic Not Diatoms                    |  |  |  |  |
| 4013  | Algae Phytoplankton                               |  |  |  |  |
| 4014  | Algae Visual Algal Assessment                     |  |  |  |  |
| 501   | Zooplankton                                       |  |  |  |  |
| 601   | Macrophytes                                       |  |  |  |  |
| 6011  | Macrophytes Seagrass                              |  |  |  |  |
| 6012  | Macrophytes Freshwater                            |  |  |  |  |
| 6013  | Macrophytes Other                                 |  |  |  |  |

Data providers must record and report biological data in adherence to the QAPP/QAP under which the data was collected.

Careful attention must be given to the reporting of each data type or sampling category, and the list of parameters expected for each data type and sampling category. See <u>Chapter 6 for the</u> <u>Commonly Reported Parameter Codes and Table 12.1 for specific values used to report for</u> <u>Parameter Code 89888 for each sampling category.</u>

Biological data must be reported by the end of the fiscal year following the year it was collected, or as specified in the data provider's contract. Data providers must record and report biological data in a specific manner, as described in this chapter.

# **TCEQ Regional and Central Office Staff**

TCEQ staff report their biological data via manual data entry into SWQMIS and select the data type and sampling category on the Sample Set metadata screen.

TCEQ staff is required to create Sample Events and Sample Sets, and report biological data electronically through SWQMIS within the fiscal year following the year that the data were collected. When TCEQ staff enters and publishes data, SWQMIS assigns the data the status of pre-production data management (PREDM).

Note that when reporting biological data via manual data entry, data are reported with a Sample Type of 'C' for Composite, a Composite Category of 'B' for both Time and Space, and a Composite Type of 'CN' for Continuous. All of these fields are required when submitting biological data to SWQMIS (see Chapter 7).

# **BLOB Files**

Reporting biological monitoring data also requires attaching Binary Large Object (BLOB) files to the SWQMIS Sample Event and/or Sample Sets. BLOB files reported with the biological data include site maps, the <u>Stream Physical Characteristics Worksheet</u> with the transect data, fish

voucher photos, or other biological data-related images. The BLOB file attachment must be named

in a format that includes the station ID, water body name, sample end date, and type of file (e.g., 13486-GreensCreek-24May2013-HabitatTransectWorksheets).

BLOB files can be attached at the Sample Event and Sample Set levels in SWQMIS by all TCEQ staff permitted to enter field data into SWQMIS. The maximum size for each attachment is 15 MB and a maximum of 5 attachments can be added to each Sample Event and/or Sample Set. The maximum allowed length of the required attachment description is 250 characters.

TCEQ data validators typically expect five BLOB files for each Sample Event for biological data. These are shown in Table 12.2 below.

| BLOB                       | Form/Description                                                                                                                | Attached To                                                             |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| ALM checklist*             | Aquatic Life Monitoring and<br>Habitat Assessment Checklist                                                                     | Sample Event                                                            |
| Site map*                  | A map of the area where<br>biological data collection has<br>occurred; samples were<br>collected                                | Sample Event                                                            |
| Voucher photos             | See SWQM Procedures<br>Manual, Volume 2, for<br>guidance on vouchering that<br>applies to the entire biological<br>Sample Event | Nekton Summary and<br>Metadata Sample Set                               |
| Habitat transect photos    | File that contains photos                                                                                                       | TCEQ Habitat Protocol<br>Sample Set                                     |
| Habitat transect worksheet | Stream Physical<br>Characteristics Worksheet<br>with the transect data                                                          | TCEQ Habitat Protocol<br>Sample Set                                     |
| Other                      | Any other file discussed<br>between the collector and the<br>TCEQ project manager and<br>specified in the QA document           | Sample Event or Sample Set<br>as discussed with TCEQ<br>project manager |

Table 12.2 Typical BLOB Files

\*The ALM Checklist and Site Map are often combined into a single BLOB.

For individual Sample Sets, there can be more than one attachment. Each attachment, when open, should display the Monitoring Station ID, Collection Date and where possible, the Station Short Description. All voucher photos for a single SWQMIS Sample Event should be combined into one document whether or not several different collection methods were used (shocking, seining, etc.); please include species names next to voucher photos. Likewise, all habitats transect photos for a single Sample Set should be combined into one document; please include the view orientation next to these photos. These attachments may be in a PDF format, Microsoft Word format, or PowerPoint format. BLOB examples are provided at the end of this chapter.

# Laboratory Information Management System (LIMS)

If a Sample Event involves TCEQ staff collecting biological data as well as water samples for analysis, a Request for Analysis (RFA) form is required. In addition, staff must create a Sample Set within the biological Sample Event for the lab data (one Sample Set per RFA). See <u>Chapter 14</u> for details on RFAs. The laboratory then reports these data to DM&A, and they are loaded into SWQMIS by a TCEQ data manager.

# **TCEQ Partner Agencies and Contractors**

# **Biological Data Contractor Deliverables**

Partners and contracted monitoring entities report biological data via pipe delimited flat files. A separate Tag ID should be assigned for each type of data collected during a biological sampling event. Each Tag ID represents a SWQMIS Sample Set and must include a record for parameter code 89888 if the Sample Set is reporting one of the Sampling Categories listed in Table 12.1.

There is no difference in format between biological data flat files and routine surface water quality monitoring data flat files that are delivered by a TCEQ partner agency or contractor (see Chapter 7 of the DMRG for the flat file format). Chapter 6 of the DMRG references biological data Sampling Categories and indicates the Sampling Category value, Composite Type and Category, and parameter descriptions with codes the TCEQ project managers anticipate to be reported. Each record should be assigned a Tag ID such that related parameters are grouped together into Sample Sets based on the value that is entered for parameter code 89888. The preferred method of delivery of biological data is in an electronic format as data deliverables; TCEQ project managers will accept hard-copies of biological data forms in addition to, rather than in lieu of, electronically formatted data. The electronic files submitted should consist of the ASCII pipe-delimited flat files, plus any additional files specified by the project manager or contract. BLOB files would be included as additional files. The additional files will be loaded as attachments to the electronic data in SWOMIS at the SWOMIS Sample Event and Sample Set levels by TCEQ. Electronic data provided by partner or contract entities should include a README.txt file that lists each BLOB submitted. Each line or record in this list includes three elements: 1) the BLOB file name, 2) a description of the BLOB, and 3) the Sample Event or Sample Set ID to which the BLOB should be attached. Providing this information helps the TCEO staff attach BLOB files to the correct Sample Event or Sample Set in the Production environment of SWQMIS.

The partner or contractor-collected data is provided to the TCEQ following a test upload by the partner or contractor into the Test environment of SWQMIS. If the test upload is successful, the data deliverable will then be provided to the TCEQ Project Manager.

# **Required Files for Biological Data Submissions:**

- ASCII Pipe-Delimited EVENT Text File
- ASCII Pipe-Delimited RESULT Text File
- README.txt File
- BLOB Files

# **Event File Format**

The generic format of the Sample/Event file is shown below:

TagID|StationID|EndDate|EndTime|EndDepth|StartDate|StartTime|StartDepth|

Category |Type|Comment|SubmittingEntity|CollectingEntity|

MonitoringType

# **Results File Format**

The generic format of the Results file is shown below:

TagID | EndDate | ParameterCode | GT/LT | Value | LOD | LOQ | QualifierCode | VerifyFlag

The Results file will have one or more records associated with each Event record. Please remember to include one record for parameter 89888 in each biological Sample Set.

# **README File Format**

The generic format of the README file is shown below:

File|Description|Tag ID

If the file will be attached to a Sample Event, please enter 'Sample Event Level' in the Tag ID field.

# Examples

The following examples are provided:

- 1. README file
- 2. ALM Summary Report and Site Map
- 3. Voucher Photos
- 4. Habitat Photos
- 5. Habitat Worksheet

# **EXAMPLE 1: README File**

File|Description|Tag ID

17471-LlanoRiver-2013-ALMSummaryReport.pdf|Summary, ALM checklist, site map, precipitation and flow graph for the Llano River sampling event.|Sample Event Level

17471-LlanoRiver-21May2013-FishVoucherPhotos.pdf|Voucher photos for May 21, 2013 Llano River fish collection.|L109655

17471-LlanoRIver-21May2013-HabitatTransectPhotos.pdf|Habitat transect photos for the May 21, 2013 Llano River sampling event.|L109644

17471-LlanoRiver-21May2013-HabitatTransectWorksheets.pdf|Habitat transect data and map for the May 21, 2013 Llano River sampling event. |L109644

17471-LlanoRiver-2013-ALMSummaryReport.pdf|Summary, ALM checklist, site map, precipitation and flow graph for the Llano River sampling event.|Sample Event Level

17471-LlanoRiver-10Jul2013-FishVoucherPhotos.pdf|Voucher photos for the July 10, 2013 Llano River fish collection.|L109623

17471-LlanoRIver-10Jul2013-HabitatTransectPhotos.pdf|Habitat transect photos for the July 10, 2013 Llano River sampling event.|L109669 17471-LlanoRiver-10Jul2013-HabitatTransectWorksheets.pdf|Habitat transect data and map for the July 10, 2013 Llano River sampling event.|L109669

17472-PedernalesRiver-2013-ALMSummaryReport.pdf|Summary, ALM checklist, site map, precipitation and flow graph for the Pedernales River sampling event.|Sample Event Level

17472-PedernalesRiver-30Mar2013-FishVoucherPhotos.pdf|Voucher photos for the March 30, 2013 Pedernales River fish collection.|L109629 17472-PedernalesRiver-30Mar2013-HabitatTransectPhotos.pdf|Habitat transect photos for the March 30, 2013 Pedernales River sampling event.|L109628

17472-PedernalesRiver-30Mar2013-HabitatTransectWorksheets.pdf|Habitat transect data and map for the March 30, 2013 Pedernales River sampling event.|L109628

17472-PedernalesRiver-2013-ALMSummaryReport.pdf|Summary, ALM checklist, site map, precipitation and flow graph for the Pedernales River sampling event.|Sample Event Level

17472-PedernalesRiver-09Jul2013-FishVoucherPhotos.pdf|Voucher photos for the July 9, 2013 Pedernales River fish collection.|L109636 17472-PedernalesRiver-09Jul2013-HabitatTransectPhotos.pdf|Habitat transect photos the for the July 9, 2013 Pedernales River sampling event.|L109635

17472-PedernalesRiver-09Jul2013-HabitatTransectWorksheets.pdf|Habitat transect data and map for the July 9, 2013 Pedernales River sampling event.|L109635

20641-ColoradoRiver-2013-ALMSummaryReport.pdf|Summary, ALM checklist, site map, precipitation and flow graph for the Colorado River sampling event.|Sample Event Level

20641-ColoradoRiver-26Mar2013-FishVoucherPhotos.pdf|Voucher photos for the March 26, 2013 Colorado River fish collection.|L109656

20641-ColoradoRiver-26Mar2013-HabitatTransectPhotos.pdf|Habitat transect photos for the March 26, 2013 Colorado River sampling event.|L109654

20641-ColoradoRiver-26Mar2013-HabitatTransectWorksheets.pdf|Habitat transect data and map for the March 26, 2013 Colorado River sampling event.|L109654

20641-ColoradoRiver-2013-ALMSummaryReport.pdf|Summary, ALM checklist, site map, precipitation and flow graph for the Colorado River sampling event.|Sample Event Level

20641-ColoradoRiver-31Jul2013-FishVoucherPhotos.pdf|Voucher photos for the July 31, 2013 Colorado River fish collection.|L109662

20641-ColoradoRiver-31Jul2013-HabitatTransectPhotos.pdf|Habitat transect photos for the July 31, 2013 Colorado River sampling event.|L109653

20641-ColoradoRiver-31Jul2013-HabitatTransectWorksheets.pdf|Habitat transect data and map for the July 31, 2013 Colorado River sampling event.|L109653

20662-SanSabaRiver-2013-ALMSummaryReport.pdf|Summary, ALM checklist, site map, precipitation and flow graph for the San Saba River sampling event.|Sample Event Level

20662-SanSabaRiver-27Mar2013-FishVoucherPhotos.pdf|Voucher photos for the March 27, 2013 San Saba River fish collection.|L109642

# EXAMPLE 2: ALM Summary Report and Site Map – page 1 of 3

# **Aquatic Life Monitoring and Habitat Assessment** Checklist

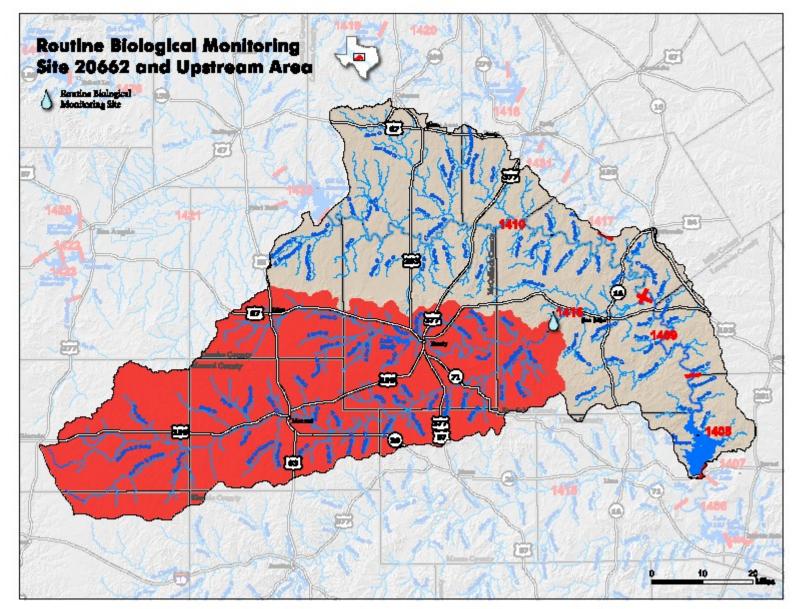
| <b>Background Info</b>                                 | rmation                                                    |             |                             |           |              |           |           |             |
|--------------------------------------------------------|------------------------------------------------------------|-------------|-----------------------------|-----------|--------------|-----------|-----------|-------------|
| Name of water body: San                                | Saba River                                                 |             |                             |           |              |           |           |             |
| Segment number: 1416                                   | Station ID: 206                                            | 62          |                             |           |              |           |           |             |
| On segment: (Yes)                                      | No                                                         |             |                             |           |              |           |           |             |
| Permit number, if applicat                             | ble: N/A                                                   | Circle      | monitoring object           | ive:      | ALM          | ALU       | UAA       | RWA         |
| Historic stream characteri                             | zation:                                                    |             |                             |           | $\sim$       |           |           |             |
| Intermittent                                           | Intermittent with<br>sufficient to sup<br>aquatic life use | port signi  |                             | Pere      | nnia)        | Unkno     | WE        |             |
| Basis for historic stream of                           | haracterization (                                          | describe):  | Observation and             | d histor  | rical flow r | ecords    |           |             |
| Current aquatic life use de                            | esignation (if clas                                        | sified seg  | ment or site speci          | ific star | dard deterr  | nined):   |           |             |
| Exceptional                                            | High                                                       | >           | Interm                      | ediate    |              |           | Limited   | d           |
| Current assessment on the                              | 2010 Water Ou                                              | ality Inver | tory, 305(b) Rep            | ort Ba    | cteria       |           |           |             |
|                                                        |                                                            |             | pported >                   | Conc      |              | Not As    | sessed    |             |
| Field data entry (FDE) int<br>(TCEQ regional biologist |                                                            | Date en     | itered into FDE:            | N/A       | RTAG         | #: N/A    |           |             |
| Field data (CRP partners                               | only):                                                     | Tag#:       | Index: N/A<br>Critical: N/A |           |              |           |           |             |
| <b>Objective for Aqu</b>                               | natic Life U                                               | SP ASS      | essment                     |           |              |           |           |             |
| Is the water body support                              |                                                            |             | Yes                         | No        | Reason       | C.        |           |             |
| Known or potential cause                               | s of aquatic life u                                        | se impair   | ment:                       |           |              |           |           |             |
| Identify sources of polluti                            | ion:                                                       |             |                             |           |              |           |           |             |
| Point source:                                          | Yes                                                        |             | No                          | Ident     | ifv          |           |           |             |
| Nonpoint source                                        |                                                            |             | No                          |           | ify.wildlife | , agricul | ture, hum | an activity |
| Ambient toxicity tests in t                            | water body?                                                | Yes         | No                          |           |              |           |           |             |
| Results                                                | and and and                                                |             | and the second              |           |              |           |           |             |
|                                                        | Sediment Chro                                              | onic        | Sediment Acute              | 2         | Water Chro   | mic       | Water A   | cute        |
| Significant effect                                     | A Contraction                                              |             |                             |           |              |           | 1.000     |             |
| No significant effect                                  |                                                            |             |                             | 5.        |              |           | 3         |             |

Monitoring Information Biological monitoring conducted during index period (03/15 to 06/30 and 10/01 to 10/15 and critical period (07/01 to 09/30).

### Stream characterization event 1, date: 3/27/2013

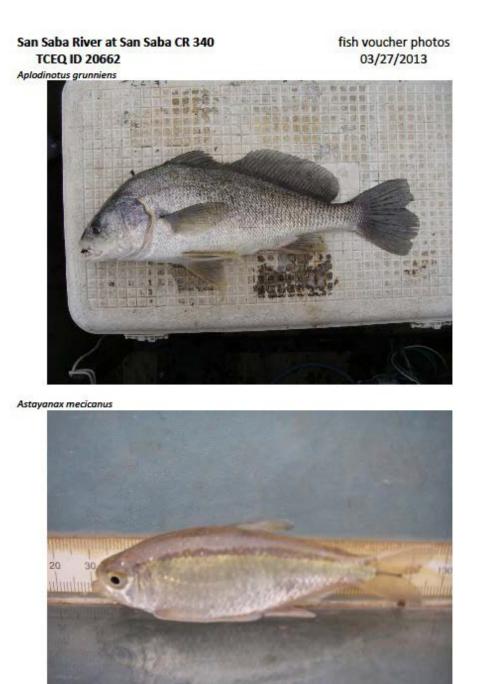
| Dry | Pools covering % of the | meters assessed | Flowing at 31 cfs (measured) |
|-----|-------------------------|-----------------|------------------------------|
|     |                         |                 |                              |

Note: If sampling event for RWA, characterize the receiving stream upstream of the existing discharge point or downstream of the proposed discharge point.

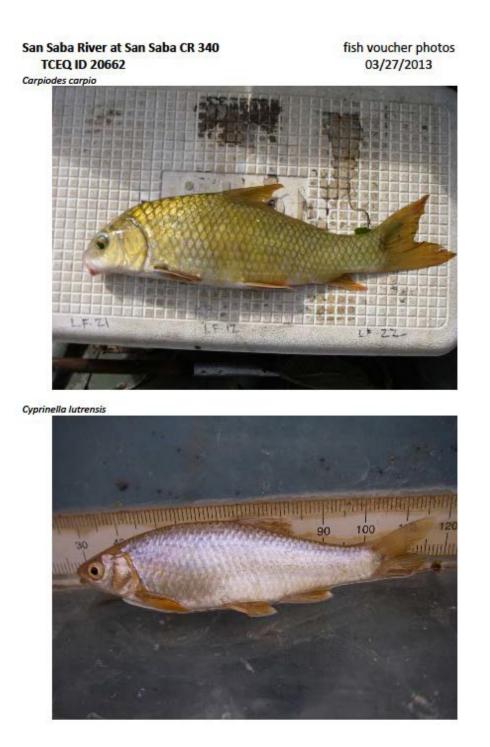

## Stream characterization event 2, date: 7/24/2013

| Dry                       | Pools covering - % of the - meters assessed    | Elowing at 31 cfs (measured)       |
|---------------------------|------------------------------------------------|------------------------------------|
| Describe conditions which | may have advarcaly affected stream during each | compling quant (for avample recent |

rains, drought, construction): Severe drought


# EXAMPLE 2: ALM Summary Report and Site Map – page 2 of 3

| Nekton sampling event 1:                                                                       |                             |             |          |
|------------------------------------------------------------------------------------------------|-----------------------------|-------------|----------|
| Minimum 15-minute (900 seconds) electrofishing:                                                |                             | Yes         | No       |
| Minimum 6 seine hauls (or equivalent effort to sample 60 m                                     | eters):                     | (Yes)       | No       |
| Fish sampling conducted in all available habitat types:                                        |                             | Yes         | No       |
| If no, please describe why:                                                                    |                             |             |          |
| Ponthia magnetine state compling event 1                                                       |                             |             |          |
| Benthic macroinvertebrate sampling event 1:<br>Indicate method(s) used:                        |                             |             |          |
| Rapid bioassessment (5-minute kicknet or snags): X                                             |                             |             |          |
| Quantitative (Surber, snags, or dredge):                                                       |                             |             |          |
| Habitat assessment event 1:                                                                    |                             |             |          |
| TCEQ habitat protocols:                                                                        |                             | (TE)        | No       |
| Stream flow measurement event 1                                                                |                             |             |          |
| Instantaneous flow measurement:                                                                |                             | (Yes)       | No       |
| USGS gauge reading:                                                                            |                             | Yes         | No       |
| Nekton sampling event 2:                                                                       |                             | 5.0.000     |          |
| Minimum 15-minute (900 seconds) electrofishing:                                                |                             | Tes         | No       |
| Minimum 6 seine hauls (or equivalent effort to sample 60 m                                     | eters):                     | (Yes)       | No       |
| Fish sampling conducted in all available habitat types:<br>If no, please describe why:         |                             | (Yes)       | No       |
|                                                                                                |                             |             |          |
| Benthic macroinvertebrate sampling event 2:                                                    |                             |             |          |
| Indicate method(s) used:                                                                       |                             |             |          |
| Rapid bioassessment (5-minute kicknet or snags): X<br>Quantitative (Surber, snags, or dredge): |                             |             |          |
| Habitat assessment event 2:                                                                    |                             |             |          |
| TCEQ habitat protocols:                                                                        |                             | (Yes)       | No       |
| If no, flow, wetted channel width, photographs, description of                                 | of bank conditions relative | to first ev | ent, and |
| description of canopy cover conditions relative to first event                                 | must be provided in this    | packet:     |          |
| Stream flow measurement event 2                                                                |                             |             |          |
| Instantaneous flow measurement:                                                                |                             | (Yes)       | No       |
| USGS gauge reading:                                                                            |                             | Yes         | No       |
| Assessment Results (Optional)                                                                  |                             |             |          |
| Tich community index event 1.                                                                  |                             |             |          |
| Fish community index event 1:<br>Exceptional High Intermediate                                 | Limited                     |             |          |
| Fish community index event 2:                                                                  | Limited                     |             |          |
| Exceptional (High) Intermediate                                                                | Limited                     |             |          |
|                                                                                                |                             |             |          |
| Benthic macroinvertebrate community index event 1:                                             | Limited                     |             |          |
| Exceptional High Intermediate                                                                  | Limited                     |             |          |
| Benthic macroinvertebrate community index event 2:<br>Exceptional High Intermediate            | Limited                     |             |          |
|                                                                                                | Linney                      |             |          |
| Habitat index event 1:                                                                         | T                           |             |          |
| Exceptional High Intermediate                                                                  | Limited                     |             |          |
| Habitat index event 2:                                                                         | T invite 3                  |             |          |
| Exceptional High Intermediate                                                                  | Limited                     |             |          |
|                                                                                                |                             |             |          |




EXAMPLE 2: ALM Summary Report and Site Map – page 3 of 3

# Example 3: Voucher Photos – page 1 of 2







Example 4: Habitat Photos – page 1 of 2

## San Saba River at San Saba CR 340 TCEQ ID 20662



100 CT



Left Bank View

Transect 1

**Downstream View** 



# Habitat Transect Photos 03/27/2013

**Right Bank View** 



Example 4: Habitat Photos – page 2 of 2

## San Saba River at San Saba CR 340 TCEQ ID 20662



## Habitat Transect Photos 03/27/2013

Left Bank View



Upstream View

Transect 2

Downstream View



Right Bank View



12-14

|                      | S              | tream Physic  | cal Characterist | ics Worksheet   |                |                  |          |
|----------------------|----------------|---------------|------------------|-----------------|----------------|------------------|----------|
| Observers:           | Djurecka, Dco  | wan, Jwoods   | ,CPetri, FMe     | Date:           | 3/27/2013      | Time:            | 11:00    |
| Weather Conditions:  | Partly Cloudy, | 45 deg F, N   | wind at 15 mph   |                 |                | 140              |          |
| Stream:              |                |               |                  | Site ID:        | 20662          | Segment:         |          |
| Location of site:    | San Saba Rive  | r at San Saba | CR 340           |                 |                | Reach:           | 500 m    |
| Obs Stream Uses:     | Recreation, A  | griculture    | 1000100          |                 |                |                  |          |
| Stream Type:         | D              | perennial     |                  | intermitten     | t with perenn  | ial pools        |          |
| Stream Bends:        |                | Vell Defined: | 2 Mod            | Defined:        | 2              | Poor Defined:    | 0        |
| Aesthetics           | wilderness     | <             | natural          |                 | common         |                  | offensiv |
| Channel Obstr/Mods:  | 0              |               | 2017 - 2017 (A.  |                 | Nur            | nber of Riffles: | 1        |
| Channel Flow Status: | high           | <             | moderate         |                 | low            |                  | no flow  |
| Riparian Vegetation  | Left           | Right         | Stream           |                 | Max Pool De    | pth:             | 3.5 m    |
| % Trees              | 15             | 8             | Flow:            | 31 cfs          | Max Pool W     |                  | 57 m     |
| % Shrubs             | 10             | 3             | Transect place   | ment relative t | o a fixed poin | nt:              |          |
| % Grassess&Forbs     | 27             | 36            |                  |                 |                |                  |          |
| % Cult. Fields       | 0              | 0             |                  |                 |                |                  |          |
| % Other              | 48             | 53            |                  |                 |                |                  |          |
|                      |                |               |                  |                 |                |                  |          |
|                      |                |               |                  |                 | Ni -           |                  | Jogle    |

| Date                                                                               | bitat Trar                                              | isect Da   | la         |            |            |            |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------|------------|------------|------------|------------|------------|--|
| Site<br>TCEQ ID                                                                    | 3/27/2013<br>San Saba River at San Saba CR 34(<br>20662 |            |            |            |            |            |  |
|                                                                                    | Transect 1                                              | Transect 2 | Transect 3 | Transect 4 | Transect 5 | Transect 6 |  |
| Stream Type (Riffle, Run, Glide, or Pool)                                          | RI                                                      | G          | RU         | P          | P          | P          |  |
| Stream Width                                                                       | 23.8                                                    | 12.4       | 24         | 57         | 57         | 50.5       |  |
| Left Bank Slope                                                                    | 90                                                      | 60         | 15         | 125        | 125        | 90         |  |
| % Left Bank Erosion                                                                | 15                                                      | 25         | 40         | 75         | 80         | 80         |  |
| Left Bank Width of Natural Buffer Vegetation                                       | >20                                                     | >20        | >20        | >20        | >20        | >20        |  |
| Right Bank Slope                                                                   | 75                                                      | 25         | 3          | 35         | 90         | 25         |  |
| % Right Bank Erosion                                                               | 70                                                      | 70         | 5          | 80         | 70         | 70         |  |
| Right Bank Width of Natural Buffer Vegetation                                      | >20                                                     | >20        | >20        | >20        | >20        | >20        |  |
| % Tree Canopy                                                                      | 32.4                                                    | 39.7       | 0.0        | 47.1       | 50.0       | 50.0       |  |
| Dominant Substrate Type<br>(Index)-ant3-ment.5-mobile. 5-boulder.7-bedrock.8-mter) | 5                                                       | 2          | 3          | 2          | 7          | 2          |  |
| Stream Depth at Point 1                                                            | 0.10                                                    | 0.02       | 0.03       | 0.28       | 0.10       | 0.50       |  |
| Stream Depth at Point 2                                                            | 0.03                                                    | 0.18       | 0.25       | 1.00       | 1.28       | 1.45       |  |
| Stream Depth at Point 3                                                            | 0.04                                                    | 0.36       | 0.43       | 0.90       | 1.90       | 2.60       |  |
| Stream Depth at Point 4                                                            | 0.00                                                    | 0.55       | 0.22       | 0.70       | 1.94       | 3.22       |  |
| Stream Depth at Point 5                                                            | 0.12                                                    | 0.75       | 0.53       | 0.72       | 1.88       | 3.50       |  |
| Stream Depth at Point 6                                                            | 0.15                                                    | 0.80       | 0.22       | 0.88       | 2.00       | 3.44       |  |
| Stream Depth at Point 7                                                            | 0.23                                                    | 0.76       | 0.16       | 0.93       | 2.00       | 3.38       |  |
| Stream Depth at Point 8                                                            | 0.13                                                    | 0.72       | 0.18       | 1.12       | 1.90       | 3.30       |  |
| Stream Depth at Point 9                                                            | 0.14                                                    | 0.45       | 0.20       | 1.35       | 1.94       | 3.20       |  |
| Stream Depth at Point 10                                                           | 0.07                                                    | 0.31       | 0.15       | 1.03       | 1.63       | 2.01       |  |
| Stream Depth at Point 11                                                           | 0.03                                                    | 0.03       | 0.12       | 0.30       | 0.30       | 0.65       |  |
| % Substrate Gravel or Larger                                                       | 98                                                      | 30         | 5          | 40         | 50         | 0          |  |
| Maximum Thalweg Depth                                                              | 0.23                                                    | 0.8        | 0.53       | 2          | 2          | 3.5        |  |
| % Instream Cover                                                                   | 85                                                      | 15         | 30         | 25         | 10         | 10         |  |
| Macrophyte Abundance                                                               |                                                         |            |            |            |            |            |  |
| 1-Abundant, 2-Common, 3-Rane,4-Absent                                              | 2                                                       | 2          | 1          | 1          | 4          | 3          |  |
| Algae Abundance                                                                    | 10                                                      | 930        | 1000       | 201        | Sec. 2     |            |  |
| 1-Abundant, 2-Common, 3-Rare, 4-Absent                                             | 2                                                       | 3          | 3          | 3          | 3          | 3          |  |
| Left Bank % Trees                                                                  | 20                                                      | 10         | 0          | 20         | 25         | 15         |  |
| Left Bank % Shrubs                                                                 | 40                                                      | 0          | 15         | 0          | 0          | 5          |  |
| Left Bank % Grasses, Forbs                                                         | 20                                                      | 60         | 45         | 20         | 5          | 10         |  |
| Left Bank % Cult Fields                                                            | 0                                                       | 0          | 0          | 0          | 0          | 0          |  |
| Left Bank % Other                                                                  | 20                                                      | 30         | 40         | 60         | 70         | 70         |  |
| Right Bank % Trees                                                                 | 10                                                      | 10         | 0          | 10         | 5          | 10         |  |
| Right Bank % Shrubs                                                                | 20                                                      | 0          | 0          | 0          | 0          | 0          |  |
| Right Bank % Grasses, Forbs                                                        | 20                                                      | 30         | 80         | 20         | 30         | 35         |  |
| Right Bank % Cult Fields                                                           | 0                                                       | 0          | 0          | 0          | 0          | 0          |  |
| Right Bank % Other                                                                 | 50                                                      | 60         | 20         | 70         | 65         | 55         |  |
| Trasect Latitude                                                                   | 31.19072                                                | 31.19003   | 31,18950   | 31.18908   | 31.18872   | 31.18794   |  |
| Trasect Longitude                                                                  | -98.90272                                               | -98.90322  | -98.90381  | -98.90467  | -98.90558  | -98.90600  |  |

# **Chapter 13 – Monitoring Type Codes**

Monitoring Type Codes are assigned by DM&A at the request of TCEQ Programs—CRP, SWQM, CWQMN, TMDL, WQ Standards, NPS. These codes are used to designate the bias and intent of sample collection.

Data reporting entities request new codes by submitting a Submitting Entity/Collecting Entity/Monitoring Type/Tag Prefix Request and Review Checklist to DM&A.

Submitting entities can obtain this form from multiple locations. For SWQMIS users, the forms are in the SWQMIS module named 'Forms'. Those with access to the TCEQ via the internet can locate the forms on the DM&A Form page.

# **Choosing the Appropriate Monitoring Type Code**

Below is the guidance for choosing the appropriate codes. If assistance is needed, please contact your TCEQ Project Manager or the program area data manager.

# **Characters One and Two**

The first two characters of the Monitoring Type Code is used to convey information about bias in sampling to end data users, so the first two characters of the code are determined by any targeted sampling conditions.

| Code            | Description        | Use this code if your samples are:                                                                                                                                                                       |
|-----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RT              | Routine Monitoring | scheduled in advance without intentionally trying to<br>target any certain environmental condition; Samples<br>are collected regardless of the conditions encountered                                    |
| BS              | Biased Season      | scheduled for a certain time of year because the<br>sample means to capture the conditions characteristic<br>of that time of year; samples are collected regardless<br>of the flow condition encountered |
| BF              | Biased Flow        | not precisely scheduled in advance because they target<br>a certain flow condition that must be present in order<br>for the sample collection to occur                                                   |
| BE              | Biased Event       | not typically scheduled in advance; monitoring is reactive to an emergency condition                                                                                                                     |
| $CD^1$          | Continuous Data    | LEADS data generated by the CWQMN— monitoring intent not characterized                                                                                                                                   |
| CE <sup>1</sup> | Continuous Event   | individual measurements from continuous monitoring targeted toward a specific event— code the summary statistics "BE"                                                                                    |

| Code            | Description        | Use this code if your samples are:                                                                                                                      |
|-----------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| CF <sup>1</sup> | Continuous Flow    | individual measurements from continuous monitoring targeted toward certain flow conditions—code the summary statistics "BF"                             |
| CS <sup>1</sup> | Continuous Season  | individual measurements from continuous monitoring<br>targeted toward a certain time of year—code the<br>summary statistics "BS"                        |
| CT <sup>1</sup> | Continuous Routine | individual measurements from continuous monitoring<br>not intentionally targeted toward any environmental<br>condition—code the summary statistics "RT" |

<sup>1</sup>Continuous monitoring samples include CWQMN, and the individual grab samples that are collected during continuous sonde deployments such as 24-hr DO monitoring.

# **Characters Three and Four**

The last two characters of the code are determined by the intent or objective of the monitoring activity.

| Code | Description                        | Use this code if your monitoring is:                                                                                                                   |  |  |  |
|------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| UA   | Use Attainability Analysis         | a structured scientific assessment of the factors<br>affecting the attainment of uses of a water body                                                  |  |  |  |
| SI   | Source Identification              | monitoring intended to establish the origin of a<br>recognized impairment or degradation of the water<br>body the project is monitoring                |  |  |  |
| RW   | Receiving Water Assessment         | a structured scientific water quality characterization of<br>a water body that is or will be receiving run off or<br>discharge from a permitted entity |  |  |  |
| LF   | Load Contributions                 | intended to define or quantify the amount of loading<br>of a certain parameter or parameters a water body is<br>receiving                              |  |  |  |
| PD   | Permit Development                 | related to permit actions not covered by another monitoring type code                                                                                  |  |  |  |
| SD   | Standards Development              | related to standards development and is not covered by another code                                                                                    |  |  |  |
| BA   | BMP Effectiveness<br>Monitoring    | related to BMP effectiveness monitoring and is not covered by another code                                                                             |  |  |  |
| TF   | Model Calibration and Verification | related to calibrating or verifying an environmental model and is not covered by another code                                                          |  |  |  |
| WD   | Watershed Characterization         | solely intended to understand the basic physical, environmental, and human elements of the watershed                                                   |  |  |  |

# **Examples of Four Character Codes**

| RTSI | Sampling scheduled in advance and is not intentionally targeting any environmental condition. Rather than trying to establish a baseline at the site, the sampling is intended to identify the origin of a recognized impairment or degradation of the water body. |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BFLF | Sampling occurs only if a certain flow regime is encountered. The ultimate goal of the sampling effort is to define or quantify the amount of loading of a certain parameter or parameters the water body is receiving.                                            |
| BSSD | Sampling scheduled at a specific time of year. The data will be used in developing the TSWQS, and no other code is more specific to the intent of the sampling.                                                                                                    |

# Note that RT and BS can be used without a 3<sup>rd</sup> and 4<sup>th</sup> character, as long as the sampling is intended to establish baseline conditions of the monitoring site.

# **Quality Assurance Codes**

These code are used to identify quality assurance sample events, and do not require the  $3^{rd}$  and  $4^{th}$  character codes.

| Code   | Description       |
|--------|-------------------|
| $CQ^1$ | Continuous QA     |
| EB     | Equipment Blank   |
| FB     | Field Blank       |
| FS     | Field Split       |
| ТВ     | Trip Blank        |
| QA     | Quality Assurance |

<sup>1</sup>Continuous monitoring samples include CWQMN, and the individual grab samples that are collected during continuous sonde deployments such as 24-hr DO monitoring.

# **Retired Monitoring Type Codes**

These codes are no longer in use, but are still associated with historical data.

| AC | Arroyo Colorado Assessment-for Arroyo Colorado Shrimp Farm Project                                                                |
|----|-----------------------------------------------------------------------------------------------------------------------------------|
| AF | Biased flow monitoring targeted toward certain flow conditions (e.g. runoff event) and collected by an automated sampling device. |
| BN | Biological—not for use determination (collection consistent with TCEQ protocol, does not meet TCEQ vouchering requirement)        |
| СМ | Citizen monitoring                                                                                                                |
| DI | Diel sampling—multiple field measurements conducted over a 24-hour period and/or summary 24-hour D.O. statistics                  |
| DL | 303(d) List related monitoring—additional sampling to further characterize the extent and severity of 303(d) listed impairments   |
| ER | Ecoregion study                                                                                                                   |
| EX | Experimental analytical samples—samples from test sites and equipment samples set to the lab for analysis.                        |
| FL | Flow monitoring study—flow monitoring to support permit actions                                                                   |
| GR | TCEQ Data Management general review                                                                                               |

| IS | Intensive/systematic—sub-watershed monitoring on a cyclical basis                                                                                |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| NA | DQO's not appropriate for 305(b) Assessment                                                                                                      |
| NI | DQO's not appropriate for 305(b) 24 hour data                                                                                                    |
| NP | Nonpoint source sampling—samples that characterize non-point source loading                                                                      |
| NS | Non-surface water sampling                                                                                                                       |
| RG | Rio Grande Toxic Substance Study-for TCEQ Central Office RGTSS only                                                                              |
| RS | Real-time continuous monitoring                                                                                                                  |
| SE | Special event—sampling done at fish kills, spills, flood events, etc.                                                                            |
| SS | Special study—for monitoring scheduled as part of an approved special study                                                                      |
| TI | 24-hour sampling collected under a TMDL QAPP; multiple field measurements conducted over a 24-hour period and/or summary 24-hour D.O. statistics |
| ТМ | Targeted monitoring                                                                                                                              |
| TN | Sampling collected under a TMDL QAPP, but not appropriate for 305(b) assessment                                                                  |
| TQ | Sampling collected under a TMDL QAPP and is appropriate for 305(b) assessment                                                                    |
| TS | Targeted Monitoring Special Study-site specific monitoring to support permit actions                                                             |
| XN | SWQM acquired nonpoint source sampling                                                                                                           |
| XR | SWQM acquired routine/baseline water sampling                                                                                                    |
| XS | Data acquired by SWQM for special studies                                                                                                        |
| XX | Type of sampling unknown—historical data                                                                                                         |

# **Chapter 14 – Request for Analysis Form**

A Request for Analysis Form (RFA) is used only by TCEQ field collectors to request laboratory analysis of samples. Additional information is provided below.

# Life Cycle of an RFA

- 1. Collector creates an RFA in SWQMIS.
- 2. Collector collects water, sediment and biological samples in the field.
- 3. Collector matches these samples with their associated RFAs.
- 4. Collector ships samples with their associated RFA to the lab for analysis.
- 5. Laboratory processes samples and RFAs.
- 6. Lab sends RFAs and Lab Reports to DM&A.
- 7. DM&A reviews RFAs and Lab Reports prior to validating data in SWQMIS.
- 8. DM&A validates data and sends the validated RFAs and Lab Reports to Regions.
- 9. Regions file and keep RFAs according to the retention schedule.

# How Many RFAs are Needed?

- 1 RFA for each media type—water, sediment, tissue are always submitted on separate RFAs
- RFA for each of the following monitoring types; routine monitoring (RT) equipment blank (EB) for dissolved metals field blanks (FB) for both total metals and total Hg on single RFA

**Example:** ambient metals-in-water samples collected RFA for all metals in ambient water (dissolved, total, and total

- 1 Hg)
- 1 RFA for the equipment blank (for dissolved metals)
- RFA for the field blanks (both total metals and total Hg on single
- 1 RFA)

# **RFA Fields**

# Information Provided by Field Staff

The following RFA information is auto-generated by SWQMIS or filled in by the sample collector.

# RFA Tag #

Auto-generated by SWQMIS when an RFA is created

# Region

Auto-populated by SWQMIS using region assigned to the RFA Generator's email address

# **Generator's Email ID**

Auto-populated by SWQMIS using the login information of the user

Lab Select the laboratory that will analyze the samples

PCA

Project Code entered by collector

# Station ID

Enter the sample Station ID

# Segment ID

Auto-populated by SWQMIS using the selected Station ID

**Collector** Select collector's name

# Description

Auto-populated by SWQMIS using the Station ID

# **Submitting Entity**

Select the entity submitting the data to SWQMIS; default SE is "WC"(TCEQ)

# **Collecting Entity**

Select the entity collecting the samples; default CE is "FO" (TCEQ Regional Office)

# **Monitoring Type**

Select the monitoring type based on purpose, refer to DMRG Chapter 13

# Associated Samples – Tag ID

Select or enter associated RFA Tag IDs for all sample types collected at the station (ambient and QC, if applicable)

Associated Samples – PC Enter the program code for each Tag ID for ambient or QC samples

# Grab Sample -

**Date** Enter the grab sample date

**End Time** Enter the grab sample time

**End Depth** Enter the grab sample depth

Composite Sample –

**Start Date** Enter the composite sample start date

**End Date** Enter the composite sample end date

# **Start Time** Enter the composite sample start time

### Start Depth

Enter the composite sample start depth

### **End Depth**

Enter the composite sample end depth

### **Composite Category**

Enter the composite category: T=Time; S=Space; B=Both; F=Flow Weight

T = Time (is not weighted)

S = Space (is not weighted)

B = Both (Time and Space)

F = Flow Weighted (Flow-Weighted Mean Concentrations)

NOTE: For the calculation of the FWMC, data on the concentration, sample time window and flow are required for each sample. The concentration in each sample is weighted by both the time and the flow that accompanied it. The FWMC represents the total load for the time period divided by the total discharge for the time period. The equation for calculating the FWMC<sup>1</sup> is:

$$FWMC = \frac{\sum_{i=1}^{n} (c_i * t_i * q_i)}{\sum_{i=1}^{n} (t_i * q_i)}$$

where q<sub>i</sub> = flow in the i<sup>th</sup> sample

### **Composite Type**

Enter the composite type (# of grabs)

### Lab Info –

Specific Conductance

Enter the field specific conductance value

Field pH

Enter the field pH value

### No. containers

Enter the number of containers accompanying this RFA

### Bacteria Bottle Lot #

Enter the bacteria bottle lot number

### Hazards or Special Instructions

Record any hazards or special instructions for the lab

The following RFA information is filled out by the laboratory receiving the samples.

### Information Provided by Laboratory Staff -

### Lab #

A unique Lab ID that identifies the RFA and associated samples when received by the laboratory.

### Received by Lab –

**Initials** Record initials of lab staff receiving the sample(s)

#### Date

Record the date that the samples were received by the lab

#### Time

Record the time that the samples were received by the lab

**Cooler Temp** Record the cooler temperature

pH checked

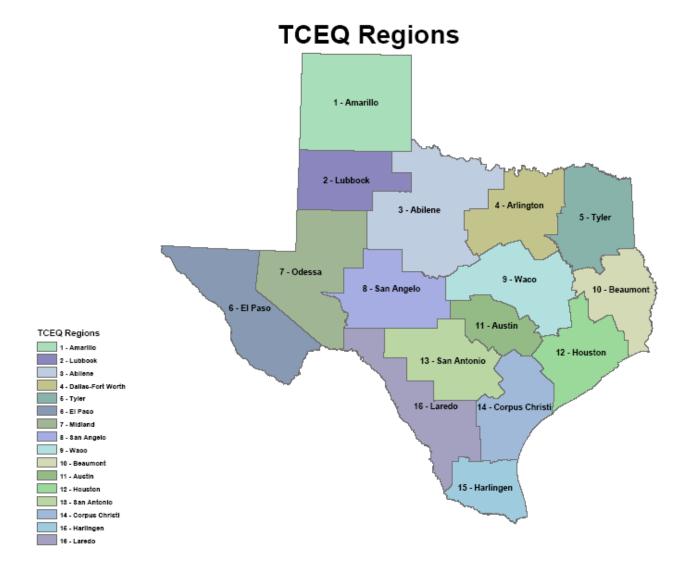
Circle yes if the pH was checked and no if it was not

Notes

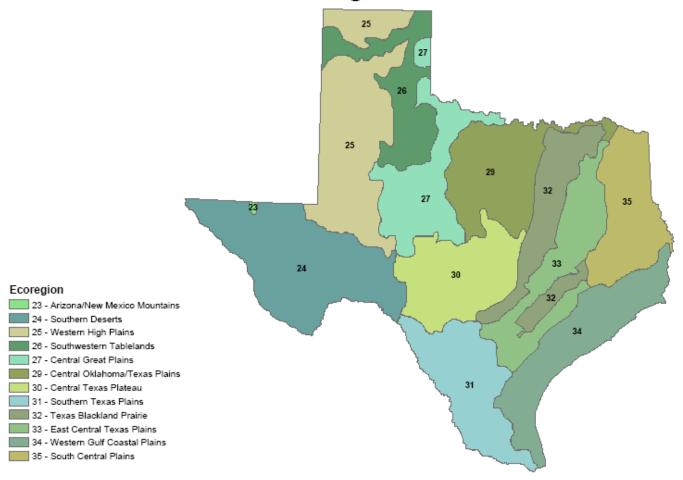
Lab staff records any notes regarding receipt information

**Chemicals in Water** Circle only those tests requested

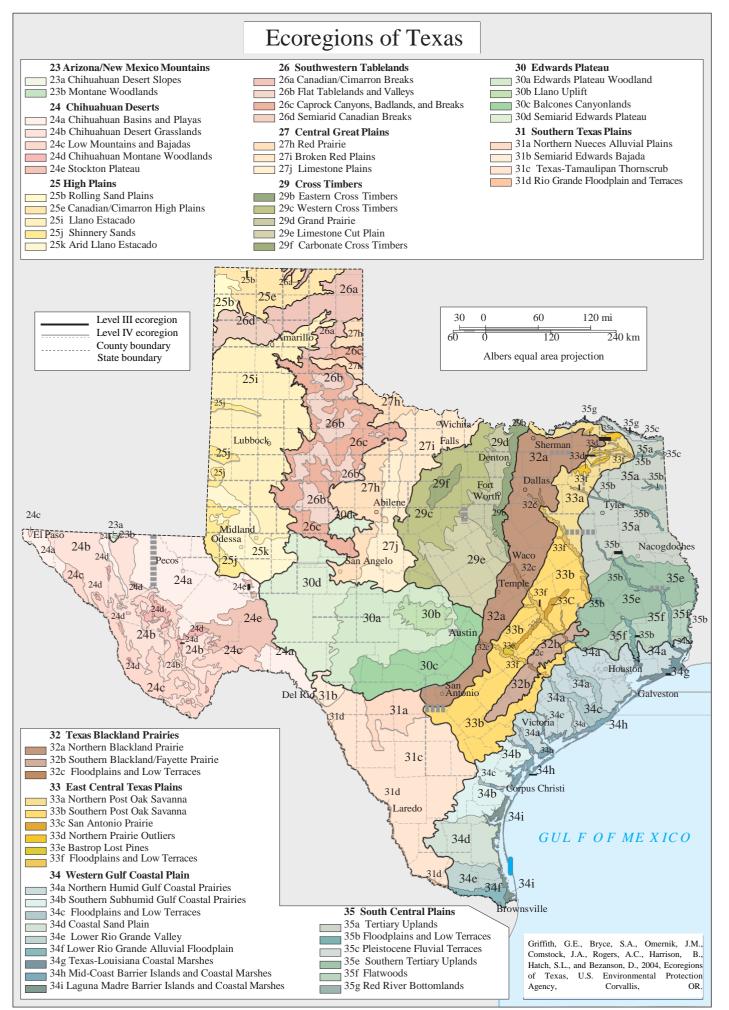
Metals in Water Circle only those tests requested


**Sediment** Circle only those tests requested

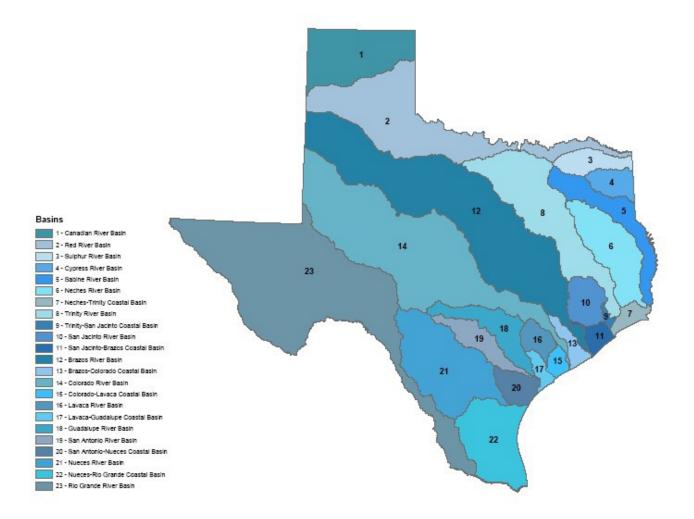
**Organics in Water** Circle only those tests requested


**Tissue** Circle only those tests requested; refer to <u>DMRG Appendix C</u>

### **Additional Information**


SWQM Procedures Volume 1




### Level III Ecoregions of Texas



Adapted from Level III Ecological Regions of North America, Map (1987). Environmental Protection Agency/Jim Omernik.



### **Texas River and Coastal Basins**



### **Appendix B – EPA Stream Station Types**

### Table 1 - EPA Level 1 Stream Station Type Codes and Definitions (one level 1 type code required)

| Type Code | Definition                                                                                                                                                                                                                                                                                                                                           |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STREAM    | Station samples from a stream. A naturally occurring, freshwater, free-flowing, channeled body of surface water, with regular or seasonal flow, that empties into an ocean, lake, reservoir or another stream. Includes rivers.                                                                                                                      |
| CANAL     | Station samples from a canal. An artificial, channeled waterway used for navigation, drainage, land irrigation, etc. Includes drainage ditches.                                                                                                                                                                                                      |
| LAKE      | Station samples from a lake. An inland body of water, naturally formed.                                                                                                                                                                                                                                                                              |
| RESERV    | Station samples from a reservoir. A man-made body of water formed by damming or obstructing a stream or river (many 'lakes' are actually reservoirs).                                                                                                                                                                                                |
| TDLSTR    | Tidal streams, e.g., most rivers 'Below Tidal'.                                                                                                                                                                                                                                                                                                      |
| SPRING    | Station samples from a spring. A natural flow of groundwater from the earth, which feeds into a stream or body of water on the surface.                                                                                                                                                                                                              |
| POND      | Small ponds, i.e., stock tanks, reflecting pool. Not wastewater lagoons.                                                                                                                                                                                                                                                                             |
| WELL      | Station samples from a well. An artificial excavation from which groundwater is drawn or through which liquid waste is disposed by injection.                                                                                                                                                                                                        |
| FWTLND    | Station samples from a freshwater wetland. A tract of soft, wet land saturated<br>and sometimes partially covered with freshwater (where the water table is at or<br>near the surface of the land) or where the surface is covered by shallow<br>freshwater due to seasonal flooding or tidal conditions. Includes swamps and<br>freshwater marshes. |
| PIPE      | Station samples at or within a man-made facility. Includes water supply, wastewater treatment and industrial sites, sewers.                                                                                                                                                                                                                          |
| OCEAN     | Station samples from an ocean, the open sea.                                                                                                                                                                                                                                                                                                         |
| ESTURY    | Station samples from an estuary. That part of a river or stream or other body of water having un-impaired connection with the open sea, whose water is measurably diluted by freshwater derived from land drainage, lagoons, bays.                                                                                                                   |
| SWTLND    | Station samples from a saltwater wetland. A tract of soft, wet land sometimes partially covered with salt, brackish, or estuarine waters, or the surface of the land is covered by shallow saltwater due to tidal conditions.                                                                                                                        |

### Table 2 - EPA Level 2 Stream Station Type Codes and Definitions (one level 2 type code required)

| Type Code | Definition                                                                                                                                                                                                                                                        |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMBNT     | Monitoring ambient conditions of the environment. Includes facility intakes pulling directly from an ambient source (for example, STREAM/AMBNT/MUN/INTAKE).                                                                                                       |
| NONAMB    | Monitoring at or within a man-made facility. Compliance monitoring falls into this category. Includes sites where facility discharge has directly influenced or impacted though not necessarily polluted the environment (for example, PIPE/NONAMB/OUTFL/NTRTMT). |

### Table 3 - EPA Level 3 Stream Station Type Codes and Definitions (required if level 1 code is PIPE; otherwise optional)

| Type Code | Definition                                                                                                                                    |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| MUN       | Municipal (incorporated). Includes water supply or wastewater treatment facilities.                                                           |
| IND       | Industrial facility.                                                                                                                          |
| СМВМІ     | Combined MUN and IND.                                                                                                                         |
| AGRI      | Agricultural site. Includes raw crops, feedlots, grazing, and silviculture                                                                    |
| DOMEST    | (forestry).                                                                                                                                   |
| DISPOS    | Domestic (residential) domicile or facility. Includes water supplies and on-lot septic systems for private dwellings.                         |
| ABANDN    | Waste (solid or liquid) disposal site.                                                                                                        |
| NTRTMT    | The site from which samples are gathered is abandoned.                                                                                        |
| PTRTMT    | No pollution abatement has been performed.                                                                                                    |
| TREATD    | Some, but not all, of the intended pollution abatement has been performed.                                                                    |
| CMBTRT    | All of the intended pollution abatement has been performed.                                                                                   |
| SEWER     | Combined treatment, where treatment status does not clearly fall into one of the categories defined above. Includes unknown treatment status. |
| INPLNT    | Monitoring within a sewer (See level 5 for further identification).                                                                           |
|           | Inside a treatment facility. This type is used in conjunction with plant location co-defined within the STORET User Handbook.                 |

# Table 4 - EPA Level 4 Stream Station Type Codes and Definitions (required if level 1 code is PIPE; otherwise optional)

| Type Code | Definition                          |
|-----------|-------------------------------------|
| INTAKE    | Intake or influent.                 |
| OUTFL     | Outfall, discharge or effluent.     |
| CMBSRC    | Combined source (INTAKE and OUTFL). |

## Table 5 - EPA Level 5 Stream Station Type Codes and Definitions (required if level 1 is PIPE; otherwise optional)

| Type Code  | Definition                                                                                                                                  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| BIO        | Biological monitoring site (for BIOS Field Survey System).                                                                                  |
| FISH       | Plant or animal matter sampling site.                                                                                                       |
| HAZARD     | Site of hazardous or toxic waste or substances.                                                                                             |
| MONITR     | Source monitoring site, monitors a known problem or to detect a specific problem.                                                           |
| NET        | Fixed site network station.                                                                                                                 |
| NONPN<br>T | Nonpoint source pollution. Includes eutrophication, acidification, thermal change, organic nutrients, sedimentation, and hydromodification. |
|            | Stormwater runoff.                                                                                                                          |
| RUNOFF     | Sanitary sewer.                                                                                                                             |
| SANSWR     | Stormwater sewer.                                                                                                                           |
| STMSWR     | Water supply storage or treatment facility.                                                                                                 |

### Appendix C – Fish Tissue Data Reporting <u>Guidance</u>

**Notes**: TCEQ staff collecting fish tissue must submit separate RFAs for each species of fish collected. See <u>Chapter 14</u> for additional information on completing RFAs. Only TCEQ staff use the RFA form.

All tissue sampling is considered a special study and requires a quality assurance plan that outlines the purpose and type/number of samples required.

### **Tissue Samples—Recording Data on the RFA**

### Metadata

Using SWQMIS, the collector completes the metadata area on the upper front portion of the RFA. See <u>Chapter 14</u> for information on completing an RFA. Following sample collection, the collector completes the Composite Sample section of the RFA.

### **Composite Sample**

A fish tissue sample is always reported as a composite sample (e.g., time and space when electrofishing) even if only one fish is collected. Required fields for composite samples are

- Start Date
- Start Time
- Start Depth—measured, in meters, from the water surface and is the shallowest depth encountered while sampling
- End Date
- End Time
- End Depth—measured, in meters, from the water surface and is the deepest point encountered while sampling
- Composite Category—recorded as "B" for time and space
- Composite Type—equal to the number of individuals in the sample; also record the same number on the lower back portion of the RFA

### **Additional RFA Data Recording**

The collector also completes the area on the lower back portion of the RFA labeled Tissue. This area of the RFA has options for the tissue type or portion of the fish submitted to the laboratory (Parameter Code 74995). Circle either whole fish or fillet; and refer to a more extensive list of anatomical (tissue type) codes in the Data Management Reference Guide (DMRG), <u>Chapter 6</u>. Fields are provided for three other criteria—*s*pecies, EPA Species Code (Parameter Code 74990), and # of individuals (Parameter Code 81614). Refer to the DMRG, Chapter 6, Commonly Used Parameter Codes, for the various Texas species parameter codes. Record the number of individuals in the sample. This number must agree with the number recorded in Composite Type. Finally, circle the desired suite of analyses to be conducted on the sample. Options are metals, pesticides, organics, or semivolatile organics.

For information on tissue sample collection and target species see SWQM-V1, Chapter 7.

### **Tissue Samples—Reporting Required Data**

TCEQ data collectors with data entry access to SWQMIS report data from the RFA along with

information in the following tables unless otherwise instructed in a project specific QAPP. TCEQ data collectors report this data through the SWQMIS sample set and result data entry system just like other field data is reported to SWQMIS. Once the user is in the SWQMIS Sampling module, locate the sample event and input the Fish Tissue Metadata and Results. Select Sample-Other for the Quality Control Type, Observation for the Data Type, Tissue Sample Metadata for the Sampling Category, and Other should be the Sample Type. Remember to also select the Tissue Type and Species, and to make the correct data input for a Composite sample type.

If data management functions are being performed by a contracting entity, report the data using ASCII pipe-delimited file formats found in <u>Chapter 7</u> of the SWQM DMRG. This typically applies to CRP/TMDL/NPS contractors, SWQM contractors, or other state agencies such as the Texas Department of State Health Services (TDSHS) or the Texas Parks and Wildlife Department (TPWD) that do not have access to the SWQMIS manual data entry system.

See the tables below for guidance on entering tissue sample data.

| Metadata Element              | What to Enter                                                                                                          |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Quality Control Type          | Sample-Other                                                                                                           |
| Monitoring Type               | As specified in QA document                                                                                            |
| Data Type                     | Analytical Result                                                                                                      |
| Sampling Category             | Metals-in-tissue, pesticides-in-tissue, semivolatiles-in-tissue, or volatile organics-in-tissue                        |
| Medium                        | Other                                                                                                                  |
| Sample Type                   | C (Composite)                                                                                                          |
| Start, End, and Deepest Depth | Report values for all three depth fields in meters                                                                     |
| Composite Category and Type   | Report the category as "B" for both Time and Space, and Type represents the number of organisms sent to the laboratory |
| Tissue Type and Species       | Select the tissue type and species from the system drop-down lists                                                     |

Metadata for Tissue Sample Set - Analytical Data (Manual Data Entry)

#### Metadata for Tissue Sample Set – Metadata (Manual Data Entry)

| Metadata Element     | What to Enter               |
|----------------------|-----------------------------|
| Quality Control Type | Sample-Other                |
| Monitoring Type      | As specified in QA Document |
| Data Type            | Observation                 |
| Sampling Category    | Tissue sample metadata      |

| Medium                        | Other                                                                                                                |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Sample Type                   | C (Composite)                                                                                                        |
| Start, End, and Deepest Depth | Report values for all three depth fields in meters                                                                   |
| Composite Category and Type   | Report the Category as B for both Time and Space, and Type represents the number of organisms sent to the laboratory |
| Tissue Type and Species       | Select the tissue type and species from the system drop-down lists                                                   |

| Parameter Code                 | What to Enter                          | Reference                                         |
|--------------------------------|----------------------------------------|---------------------------------------------------|
| 5-Digit, Texas Species<br>Code | Number of individuals                  | Sample collected, and DMRG,<br>Chapter 6          |
| 74990                          | EPA Species Code                       | DMRG, Chapter 6                                   |
| 74995                          | Anatomical Part Code                   | DMRG, Chapter 6                                   |
| 81614                          | Number of individuals in tissue sample | Sample collected                                  |
| 81615                          | Number of species in tissue sample     | Always use one species per tissue sample, value=1 |
| 00039                          | Length in millimeters (if one fish)    | Sample collected                                  |
| 00019                          | Weight in grams (if one fish)          | Sample collected                                  |
| 84100                          | Sex of sample                          | 1=male, 2=female, 3=mixed,<br>4=unknown           |

#### **Common Fish Tissue Specimen Parameters**

### **Tissue Samples - Completing the Fish Collection Reporting Form**

The Fish Collection Reporting Form is used by TCEQ staff when reporting fish collection activities to SWQM-Central Office (SWQM-CO) staff. The Fish Collection Reporting Form is located in Chapter 7 of the SWQM-V1 (Figures 7.1 and 7.2). Fish tissue collection events conducted within each region are compiled and reported annually to SWQM-CO. SWQM-CO will tally and submit the information to TPWD to fulfill the scientific collection permit requirements. Refer to the Fish Collection Reporting Form for guidance on reporting data for the TPWD Permit Requirements. **Note**: Please do not attach this form to a SWQMIS Sample Event or Sample Set as a BLOB file.

## Appendix D – Geographic Information Codes

### **Codes for SLOC Requests**

The following codes are for use in SLOC Requests through the SWQMIS database and are values for fields listed in Chapter 3. If any entity or program submitting a SLOC Request finds that no appropriate code exists for its needs, please contact Cathy Anderson at <<u>cathy.anderson@tceq.texas.gov></u> or (512) 239-1805.

For further reference on data standards, data sources, and other useful links, also consult the TCEQ Geographic Information Systems website at <a href="http://www.tceq.texas.gov/gis/index>">http://www.tceq.texas.gov/gis/index></a>.

#### Horizontal Reference

GPS UNSPECIFIED

| Code                         | Definition                                                 |
|------------------------------|------------------------------------------------------------|
| FAC_CEN                      | Center of Facility                                         |
| FAC_NW                       | Northwest Corner of Facility                               |
| FAC_NE                       | Northeast Corner of Facility                               |
| FAC_SW                       | Southwest Corner of Facility                               |
| FAC_SE                       | Southeast Corner of Facility                               |
| FAC_ENTR                     | Main Entrance of Facility                                  |
| STRUC_CEN                    | Center of Structure/Building                               |
| STRUC_NW                     | Northwest Corner of Structure/Building                     |
| STRUC_NE                     | Northeast Corner of Structure/Building                     |
| STRUC_SW                     | Southwest Corner of Structure/Building                     |
| STRUC_SE                     | Southeast Corner of Structure/Building                     |
| STRUC_ENTR                   | Main Entrance of Structure/Building                        |
| OTHER                        | Other                                                      |
| Horizontal Datum             |                                                            |
| Code                         | Definition                                                 |
| NAD83                        | North American Datum of 1983                               |
| NAD27                        | North American Datum of 1927                               |
| WGS84                        | World Geodetic System of 1984                              |
| UNKWN                        | Horizontal Datum Unknown                                   |
| Horizontal Collection Method |                                                            |
| Code D                       | efinition                                                  |
| —                            | lobal Positioning System (GPS) - Differential<br>orrection |

Global Positioning System (GPS) - Non- Differentially

D-2

|                               | Corrected                                        |
|-------------------------------|--------------------------------------------------|
| INTERPOLATION-MAP             | Map Interpolation - Digital                      |
| INTERPOLATION-PHOTO           | Photo Interpolation - Digital                    |
| CENSUS BLOCK-1900-CENTROID    | Census 1990 - Block Centroid                     |
| CENSUS-OTHER                  | Census Other                                     |
| ADDMAT_INT                    | Address Matching - Intersection                  |
| ADDRESS MATCHING HOUSE NUMBER | Address Matching - House Number                  |
| ADDRESS MATCHING-OTHER        | Address Matching - Other                         |
| ADDMAT_CL                     | Address Matching - Center Line                   |
| INTERPOLATION-SATELLITE       | Interpolation Satellite Imagery                  |
| INTERPOLATION-SPOT            | Interpolation Satellite Imagery - SPOT           |
| UNKNOWN                       | Method Unknown                                   |
| Horizontal Accuracy           |                                                  |
| Code                          | Definition                                       |
| DOQQ                          | 1-Meter DOQQ with an accuracy of 5 meters        |
| ТОРО                          | Has an accuracy of 12 meters                     |
| GOOGLE MAP                    | Uses 1-Meter DOQQ's with an accuracy of 5 meters |
| GIS                           | Uses 1-Meter DOQQ's with an accuracy of 5 meters |
| GPS UNIT                      | The accuracy level reported by the GPS unit      |
| Elevation Datum               |                                                  |
| Code                          | Definition                                       |
| NGVD_88                       | North American Vertical Datum of 1988            |
| NGVD_29                       | North American Vertical Datum of 1929            |
| UNKNOWN                       | Vertical Datum Unknown                           |
| Elevation Method              |                                                  |
| Code                          | Definition                                       |
| DEM_10                        | Digital Elevation Model - 10 Meter               |
| DEM 30                        | Digital Elevation Model - 30 Meter               |

DEM\_60 DEM\_90

D-3

Digital Elevation Model - 60 Meter

Digital Elevation Model - 90 Meter

| ТОРО     | Digital 7.5' United States Geological Survey (USGS)<br>Topographic Map |
|----------|------------------------------------------------------------------------|
| SURVEY   | Ground Survey                                                          |
| GPS_SURV | Global Positioning System (GPS) - Survey Grade<br>Receiver             |

| Code | Definition                                 | Description and Usage                                                                                                                                                                                                       |
|------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A    | Not Analyzed                               | This code has been used in the past in datasets where<br>not all parameters in a standard suite were reported.<br>This code is not currently in use.                                                                        |
| AA   | Value above AWRL                           | The value reported is above the minimum analytical sensitivity required by the program (documented in the SWQM QAPP).                                                                                                       |
| AQ   | Value above quantitation range             | The analysis returned a value statistically unreliable based on the capability of the instrument.                                                                                                                           |
| В    | Bactericidal Effect<br>Indicated           | Elements of the sample or preservative are known or<br>have been observed to have an effect on certain or all<br>bacteria present. This qualifier alerts data users that<br>bacteria values may reflect this impact.        |
| ВК   | Field Blank Precision<br>Failure           | The result from a Field Blank (field blank, instrument<br>blank, trip blank, etc.) fell outside the project-specific<br>acceptance limits, and possible cause(s) for the failure<br>must be provided in the comments field. |
| BL   | Blank did not meet<br>SWQM QA criteria     | If the blank sample associated with this measurement<br>did not meet SWQM QA criteria, this qualifier marks<br>the data point for exclusion from 305(b) assessment<br>analysis.                                             |
| BN   | Biological specimen                        | Biological specimen not vouchered.                                                                                                                                                                                          |
|      | not vouchered                              |                                                                                                                                                                                                                             |
| BQ   | Analyte detected below quantitation limits | The analyte was detected at a level statistically<br>unreliable based on the capability of the instrument.                                                                                                                  |
| С    | Chlorine Present                           | Chlorine present in the sample or during analysis may have affected this result.                                                                                                                                            |
| CU   | Value deemed<br>unreasonable by collector  | Collector deems value unreasonable for waterbody, although value not an outlier and parameter passed all QC.                                                                                                                |
| D    | Did Not Pass All Q.C.<br>Criteria          | This qualifier may aid in decisions regarding data<br>usability, in combination with details that may be in the<br>sample notes describing which criteria were not met.                                                     |
| DU   | Duplicate Data                             | If duplicate data are accidentally loaded into SWQMIS,<br>this qualifier is used to alert the user that certain data<br>points may weight analysis.                                                                         |
| E    | Lab Error                                  | This qualifier may be used if several errors apply or if a description of the specific error would not aid in data usability decisions.                                                                                     |
| ES   | Estimated Value                            | A simple alert to the data user that this is not an analytically derived value.                                                                                                                                             |
| F    | No Preserved Sample                        | An unpreserved sample may still yield some useable<br>data; this code is used to qualify the parameters within<br>that sample that are negatively impacted by lack of<br>preservatives.                                     |

| Code | Definition                                                | Description and Usage                                                                                                                                                                                                                                                        |
|------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G    | No Sample Submitted                                       | This code has been used in the past for samples where<br>expected/scheduled analyses could not be performed.<br>This code is not currently in use.                                                                                                                           |
| Н    | Hold Time Exceeded                                        | This qualifier may aid in decisions regarding data<br>usability, in combination with information about length<br>of time exceedance that may be in the sample notes.                                                                                                         |
| Ι    | Interference                                              | Interference occurred during analysis; this result is<br>questionable. Any available details should be included<br>in the sample notes.                                                                                                                                      |
| ΙΟ   | Incomplete & Unofficial                                   | An alert to the data user that this value is associated<br>with a sample missing required information such as<br>sample depth or sample time. Any available details<br>should be included in the sample notes.                                                               |
| J    | All Samples Preserved                                     | Analytes usually quantified from unpreserved samples<br>may be reported even if all samples arrived at the lab<br>preserved.                                                                                                                                                 |
| K    | Statistically Unreliable                                  | Collector or analyst review revealed this result to be<br>unreliable or unreasonable. See also code OQ, which<br>may be applicable.                                                                                                                                          |
| L    | Call Lab                                                  | This qualifier may be used if several errors apply or if<br>the error requires more explanation than is practical to<br>include in the sample notes. Information from the lab is<br>necessary to make a decision about data usability for<br>parameters with this qualifier. |
| М    | Instrument Failure                                        | Instrument failure occurred during analysis; this result<br>is questionable. Any available details should be<br>included in the sample notes.                                                                                                                                |
| ME   | Method Not Appropriate<br>for SWQM Assessment             | This qualifier may indicate that the value was obtained<br>using alternative or experimental methods. These<br>methods are documented in their specific QAPP but<br>not approved for SWQM 305(b)/303(d) assessment.                                                          |
| N    | Container Leaking                                         | A sample container arrived at the lab leaking. Effect on<br>the sample and the resulting data is unknown or<br>unquantifiable. Any available details should be<br>included in the sample notes.                                                                              |
| ND   | Material Specifically<br>Analyzed For But Not<br>Detected | This qualifier is a value-added remark, usually used<br>when a result value of "less than" the analytical limit is<br>reported. It indicates that while the reported value is<br>correct, the material was not detected at all.                                              |
| NO   | Data Not Collected<br>Under Approved Agency<br>QAPP       | These data may be acquired from outside sources<br>without the complete verification and validation<br>against the SWQM QAPP. They may also be data<br>associated with a TCEQ project collected outside its<br>QAPP effective period.                                        |
| 0    | Shipping Error                                            | The sample was received with a deficiency incurred<br>during shipping. It may indicate such circumstances as<br>an open or damaged shipping container. See also code<br>N, which may be applicable.                                                                          |

| Code | Definition                                             | Description and Usage                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OQ   | Outlier value deemed<br>questionable by collector      | Values outside the SWQMIS minimum/maximum<br>screening levels for that parameter are examined by the<br>data collector. Those that are reasonable for the<br>conditions at the sample location (usually based on the<br>professional expertise of the collector) are verified.<br>Those that are not reasonable are qualified with this<br>code to indicate that some unknown error may have<br>occurred to impact the result. |
| OR   | Results Based on Colony<br>Count Outside<br>Acceptable | Bacteria colony counts outside the proscribed range<br>were used to derive this result; the result is questionable.                                                                                                                                                                                                                                                                                                            |
| Р    | Total Does Not Warrant<br>TCLP                         | This informative remark does not indicate that the result<br>is questionable. It is simply a notation to alert the data<br>user that a result value from a fraction analysis is not<br>high enough to necessitate a Toxicity Characteristic<br>Leaching Procedure. The result from fraction analysis is<br>sufficient to make a determination of compliance or<br>toxicity.                                                    |
| PE   | Presumptive Evidence of<br>Presence of Material        | A simple alert to the data user that this may not be an<br>analytically derived value. This qualifier may also be<br>used to mark an analytical value when the presence of<br>that parameter suggests that another material not<br>specifically analyzed for may be present. Any available<br>details should be included in the sample notes.                                                                                  |
| PV   | Presence of Material<br>Verified But Not<br>Quantified | This code has been used in the past for samples where<br>the analyte quantity was above the limit of detection but<br>below the limit of quantitation. Values with this<br>qualifier are not suitable for use in quantitative data<br>analysis. This code is not currently in use.                                                                                                                                             |
| Q    | Quantity Not Sufficient                                | This code has been used in the past for samples where<br>expected/scheduled analyses could not be performed<br>due to insufficient sample volume. This code is not<br>currently in use.                                                                                                                                                                                                                                        |
| R    | Improperly Collected<br>Sample                         | This qualifier alerts the data user that the value is<br>questionable due to a sample collection error. Any<br>available details should be included in the sample notes.                                                                                                                                                                                                                                                       |
| RP   | RPD outside accepted recovery limits                   | This qualifier may aid in decisions regarding data<br>usability, in combination with details that may be in the<br>sample notes describing the actual RPD value associated<br>with the QC sample.                                                                                                                                                                                                                              |
| S    | Container Broken in<br>Shipment                        | This code has been used in the past for samples where<br>expected/scheduled analyses could not be performed<br>due to loss or contamination of the sample. This code is<br>not currently in use.                                                                                                                                                                                                                               |
| SL   | Field Split of Field<br>Duplicate Precision<br>Failure | This qualifier is used when precision between a sample<br>and its Field Split or Field Duplicate exceed project-<br>specific acceptance limits. The precision measurement,<br>criteria, and possible cause(s) for the failure must be<br>provided in the comments field.                                                                                                                                                       |
| SP   | Split did not meet<br>SWQM QA criteria                 | The split sample criteria documented in the SWQM QAPP were not met for this parameter. Any available details about which criteria were not met should be included in the sample notes.                                                                                                                                                                                                                                         |

| Code | Definition               | Description and Usage                                     |
|------|--------------------------|-----------------------------------------------------------|
| SR   | Spike recovery outside   | This qualifier may aid in decisions regarding data        |
|      | accepted recovery limits | usability, in combination with details that may be in the |
|      |                          | sample notes describing the actual spike recovery value   |
|      |                          | associated with the QC sample.                            |
| Т    | Exceeded Preservation    | The temperature of the sample was beyond the specified    |
|      | Temperature              | preservation limit at time of analysis.                   |
| U    | Reported Values Less     | The analysis returned a value statistically unreliable    |
|      | Than Detection Limit     | based on the capability of the instrument.                |
| UR   | Value deemed             | Values clearly unreasonable but without sufficient        |
|      | unreasonable by DM&A     | documentation (or resources) to cite a more specific      |
|      |                          | error may be flagged with this qualifier.                 |

### References

(1) Texas Commission on Environmental Quality. 2012. Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods. Publication Number RG-415, August 2012, Austin TX.

(2) Texas Commission on Environmental Quality. 2014. Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data. Publication Number RG-416, May 2014, AustinTX.