
  United States   Office of Environmental  EPA/240/B-06/002 
                Environmental Protection  Information   February 2006    
                Agency    Washington, DC 20460 

 

Data Quality Assessment:          
A Reviewer’s Guide  

 
 EPA QA/G-9R 

 
 
 

 





 

EPA QA/G-9R  February 2006  iii

FOREWORD 
 

This document is the 2006 version of the Data Quality Assessment: A Reviewer’s Guide 
which provides general guidance to organizations on assessing data quality criteria and 
performance specifications for decision making. The Environmental Protection Agency (EPA) 
has developed a process for performing the Data Quality Assessment (DQA) Process for project 
managers and planners to determine whether the type, quantity, and quality of data needed to 
support Agency decisions have been achieved. This guidance is the culmination of experiences 
in the design and statistical analyses of environmental data in different Program Offices at the 
EPA. Many elements of prior guidance, statistics, and scientific planning have been incorporated 
into this document. 
 

This document is one of a series of quality management guidance documents that the 
EPA Quality Staff has prepared to assist users in implementing the Agency-wide Quality 
System. Other related documents include: 
 

EPA QA/G-4     Guidance on Systematic Planning using the Data Quality Objectives Process  
 

EPA QA/G-4D  DEFT Software for the Data Quality Objectives Process 
 

EPA QA/G-5S  Guidance on Choosing a Sampling Design for Environmental Data 
Collection  

 
EPA QA/G-9S   Data Quality Assessment: Statistical Methods for Practitioners 

 
This document is intended to be a "living document" that will be updated periodically to 

incorporate new topics and revisions or refinements to existing procedures. Comments received 
on this 2006 version will be considered for inclusion in subsequent versions. Please send your 
written comments on the Data Quality Assessment: A Reviewer’s Guide to: 
 

Quality Staff (2811R) 
Office of Environmental Information 
U.S. Environmental Protection Agency 
1200 Pennsylvania Avenue N.W. 
Washington, DC  20460 
Phone: (202) 564-6830 
Fax:  (202) 565-2441 
E-mail: quality@epa.gov
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CHAPTER 0 
 

INTRODUCTION 
 
0.1 Purpose of this Guidance 
 

Data Quality Assessment (DQA) is the scientific and statistical evaluation of 
environmental data to determine if they meet the planning objectives of the project, and thus are 
of the right type, quality, and quantity to support their intended use.  This guidance describes 
broadly the statistical aspects of DQA in evaluating environmental data sets.  A more detailed 
discussion about DQA graphical and statistical tools may be found in the companion guidance 
document, Data Quality Assessment: Statistical Methods for Practitioners (Final Draft) (EPA 
QA/G-9S) (U.S. EPA 2004).  This guidance applies to using DQA to support environmental 
decision-making (e.g., compliance determinations), and to using DQA in estimation problems in 
which environmental data are used (e.g., monitoring programs). 

 
DQA is built on a fundamental premise: data quality is meaningful only when it relates to 

the intended use of the data.  Data quality does not exist in a vacuum, a reviewer needs to know 
in what context a data set is to be used in order to establish a relevant yardstick for judging 
whether or not the data is acceptable.  By using DQA, a reviewer can answer four important 
questions: 

 
1. Can a decision (or estimate) be made with the desired level of certainty, given the 

quality of the data? 
 
2. How well did the sampling design perform? 
 
3. If the same sampling design strategy is used again for a similar study, would the 

data be expected to support the same intended use with the desired level of 
certainty? 

 
4. Is it likely that sufficient samples were taken to enable the reviewer to see an 

effect if it was really present? 
 

The first question addresses the reviewer’s immediate needs.  For example, if the data are 
being used for decision-making and provide evidence strongly in favor of one course of action 
over another, then the decision maker can proceed knowing that the decision will be supported 
by unambiguous data.  However, if the data do not show sufficiently strong evidence to favor 
one alternative, then the data analysis alerts the decision maker to this uncertainty.  The decision 
maker now is in a position to make an informed choice about how to proceed (such as collect 
more or different data before making the decision, or proceed with the decision despite the 
relatively high, but tolerable, chance of drawing an erroneous conclusion). 
 

The second question addresses how robust this sampling design is with respect to 
changing conditions.  If the design is very sensitive to potentially disturbing influences, then 
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interpretation of the results may be difficult.  By addressing the second question the reviewer 
guards against the possibility of a spurious result arising from a unique set of circumstances. 

The third question addresses the problem of whether this could be considered a unique 
situation where the results of this DQA only applies to this situation only and the conclusions 
cannot be extrapolated to similar situations.  It also addresses the suitability of using this data 
collection design cannot reviewer’s potential future needs.  For example, if reviewers intend to 
use a certain sampling design at a different location from where the design was first used, they 
should determine how well the design can be expected to perform given that the outcomes and 
environmental conditions of this sampling event will be different from those of the original 
event.  As environmental conditions will vary from one location or one time to another, the 
adequacy of the sampling design should be evaluated over a broad range of possible outcomes 
and conditions. 

 
The final question addresses the issue of whether sufficient resources were used in the 

study.  For example, in an epidemiological investigation, was it likely the effect of interest could 
be reliably observed given the limited number of samples actually obtained. 

 
0.2 DQA and the Data Life Cycle 

 
The data life cycle (depicted in Figure 0-1) comprises three steps: planning, 

implementation, and assessment.  During the planning phase, a systematic planning procedure 
(such as the Data Quality Objectives (DQO) Process) is used to define criteria for determining 
the number, location, and timing of samples (measurements) to be collected in order to produce a 
result with a desired level of certainty.  

This information, along with the sampling methods, analytical procedures, and 
appropriate quality assurance (QA) and quality control procedures, is documented in the QA 
Project Plan.  Data are then collected following the QA Project Plan specifications in the 
implementation phase. 

 
At the outset of the assessment phase, the data are verified and validated to ensure that 

the sampling and analysis protocols specified in the QA Project Plan were followed, and that the 
measurement systems were performed in accordance with the criteria specified in the QA Project 
Plan.  Then the statistical component of DQA completes the data life cycle by providing the 
evaluation needed to determine if the performance and acceptance criteria developed by the 
DQO planning process were achieved. 
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Figure 0-1.  Data Life Cycle 
 
0.3 The Five Steps of Statistical DQA 
 

The statistical part of DQA involves five steps that begin with a review of the planning 
documentation and end with an answer to the problem or question posed during the planning 
phase of the study.  These steps roughly parallel the actions of an environmental statistician 
when analyzing a set of data.  The five steps, which are described in more detail in the following 
chapters of this guidance, are briefly summarized as follows: 

 
1. Review the project’s objectives and sampling design:  Review the objectives 

defined during systematic planning to assure that they are still applicable.  If 
objectives have not been developed (e.g., when using existing data independently 
collected), specify them before evaluating the data for the projects objectives.  
Review the sampling design and data collection documentation for consistency 
with the project objectives observing any potential discrepancies. 

 
2. Conduct a preliminary data review:  Review QA reports (when possible) for the 

validation of data, calculate basic statistics, and generate graphs of the data.  Use 
this information to learn about the structure of the data and identify patterns, 
relationships, or potential anomalies. 

 
3. Select the statistical method:  Select the appropriate procedures for summarizing 

and analyzing the data, based on the review of the performance and acceptance 
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criteria associated with the projects objectives, the sampling design, and the 
preliminary data review.  Identify the key underlying assumptions associated with 
the statistical test. 

 
4. Verify the assumptions of the statistical method:  Evaluate whether the 

underlying assumptions hold, or whether departures are acceptable, given the 
actual data and other information about the study. 

 
5. Draw conclusions from the data:  Perform the calculations pertinent to the 

statistical test, and document the conclusions to be drawn as a result of these 
calculations.  If the design is to be used again, evaluate the performance of the 
sampling design. 

 
Although these five steps are presented in a linear sequence, DQA is by its very nature 

iterative.  For example, if the preliminary data review reveals patterns or anomalies in the data 
set that are inconsistent with the project objectives, then some aspects of the study analysis may 
have to be reconsidered.  Likewise, if the underlying assumptions of the statistical test are not 
supported by the data, then previous steps of the DQA may have to be revisited.  The strength of 
DQA Process is that it is designed to promote an understanding of how well the data satisfy their 
intended use by progressing in a logical and efficient manner. 
 
 Nevertheless, it should be realized that DQA cannot absolutely prove that the objectives 
set forth in the planning phase of a study have been achieved.  This is because the reviewer can 
never know the true value of the item of interest, only information from a sample.  Sample data 
collection provides the reviewer only with an estimate, not the true value.  As an reviewer makes 
a determination based on the estimated value, there is always the risk of drawing an incorrect 
conclusion.  Use of a well-documented planning process helps reduce this risk to an acceptable 
level. 
 
0.4 Intended Audience 
 

This guidance is written as a general overview of statistical DQA for a broad audience of 
potential data users, reviewers, data generators and data investigators.  Reviewers (such as 
project managers, risk assessors, or principal investigators who are responsible for making 
decisions or producing estimates regarding environmental characteristics based on environmental 
data) should find this guidance useful for understanding and directing the technical work of 
others who produce and analyze data.  Data generators (such as analytical chemists, field 
sampling specialists, or technical support staff responsible for collecting and analyzing 
environmental samples and reporting the resulting data values) should find this guidance helpful 
for understanding how their work will be used. Data investigators (such as technical investigators 
responsible for evaluating the quality of environmental data) should find this guidance to be a 
handy summary of DQA-related concepts.  Specific information about applying DQA-related 
graphical and statistical techniques is contained in the companion guidance, Data Quality 
Assessment: Statistical Methods for Practitioners (Final Draft) (EPA QA/G-9S). 
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0.5 Organization of this Guidance 
 

Chapters 1 through 5 of this guidance address the five steps of DQA in turn. Each chapter 
discusses the activities expected and includes a list of the outputs that should be achieved in that 
step.  Chapter 6 provides additional perspectives on how to interpret data and understand/ 
communicate the conclusions drawn from data.  Finally, Appendices A through E contain non-
technical explanatory material describing some of the statistical concepts used.  Appendix F is a 
checklist that can be used to ensure all steps of the DQA process have been addressed. 
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Figure 1-1.  The Data Quality 
Objectives Process

CHAPTER 1 
 

STEP 1:  REVIEW THE PROJECT’S OBJECTIVES AND SAMPLING DESIGN 
 
 DQA begins by reviewing the key outputs from the planning phase of the data life cycle 
such as the Data Quality Objectives, the QA Project Plan, and any related documents.  The study 
objective provides the context for understanding the purpose of the data collection effort and 
establishes the qualitative and quantitative basis for assessing the quality of the data set for the 
intended use.  The sampling design (documented in the QA Project Plan) provides important 
information about how to interpret the data.  By studying the sampling design, the reviewer can 
gain an understanding of the assumptions under which the design was developed, as well as the 
relationship between these assumptions and the study objective.  By reviewing the methods by 
which the samples were collected, measured, and 
reported, the reviewer prepares for the preliminary 
data review and subsequent steps of DQA.   
 
 Systematic planning improves the 
representativeness and overall quality of a sampling 
design, the effectiveness and efficiency with which 
the sampling and analysis plan is implemented, and 
the usefulness of subsequent DQA efforts.  For 
systematic planning, the Agency recommends the 
DQO Process, a logical, systematic planning process 
based on the scientific method.  The DQO Process 
emphasizes the planning and development of a 
sampling design to collect the right type, quality, and 
quantity of data for the intended use.  Employing both 
the DQO Process and DQA will help to ensure that 
projects are supported by data of adequate quality; the 
DQO Process does so prospectively and DQA does so 
retrospectively.  Systematic planning, whether the 
DQO Process or other, can help assure that data are 
not collected spuriously.  The DQO Process is 
discussed in Guidance on the Data Quality Objectives 
Process (QA/G-4) (U.S. EPA 2000a). 
 
 In instances where project objectives have not 
been developed and documented during the planning 
phase of the study, it is necessary to recreate some of 
the project objectives prior to conducting the DQA.  
These are used to make appropriate criteria for 
evaluating the quality of the data with respect to their intended use.  The most important 
recreations are: hypotheses chosen, level of significance selected (tolerable levels of potential 
decision errors), statistical method selected, and number of samples collected.  The seven steps 
of the DQO Process are illustrated in Figure 1-1. 
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1.1 Review Study Objectives 
 

First, the objectives of the study should be reviewed in order to provide a context for 
analyzing the data.  If a systematic planning process has been implemented before the data are 
collected, then this step reduces to reviewing the documentation on the study objectives.  If no 
clear planning process was used, the reviewer should:  

 
• Develop a concise definition of the problem (e.g. DQO Process Step 1) and of the 

methodology of how the data were collected (e.g. DQO Process Step 2).  This should 
provide the fundamental reason for collecting the environmental data and identify all 
potential actions that could result from the data analysis. 
 

• Identify the target population (universe of interest) and determine if any essential 
information is missing (e.g. DQO Process Step 3).  If so, either collect the missing 
information before proceeding, or select a different approach to resolving the problem. 
 

• Specify the scale of determination (any subpopulations of interest) and any boundaries on 
the study (e.g. DQO Process Step 4) based on the sampling design.  The scale of 
determination is the smallest area or time period to which the conclusions of the study 
will apply.  The apparent sampling design and implementation may restrict how small or 
how large this scale of determination can be. 
 

1.2 Translate Study Objectives into Statistical Terms 
 
 In this activity, the reviewer's objectives are used to develop a precise statement of how 
environmental data will be evaluated to generate the study’s conclusions.  If DQOs were 
generated during planning, this statement will be found as an output of DQO Process Step 5. 
 

In many cases, this activity is best accomplished by the formulation of statistical 
hypotheses, including a null hypothesis, which is a "baseline condition" that is presumed to be 
true in the absence of strong evidence to the contrary, as well as an alternative hypothesis, which 
bears the burden of proof.  In other words, the baseline condition will be retained unless the 
alternative condition (the alternative hypothesis) is thought to be true due to the preponderance 
of evidence.  In general, such hypotheses often consist of the following elements: 

 
• a population parameter of interest (such as a mean or a median), which describes the 

feature of the environment that the reviewer is investigating; 
  

• a numerical value to which the parameter will be compared, such as a regulatory or risk-
based threshold or a similar parameter from another place (e.g., comparison to a reference 
site) or time (e.g., comparison to a prior time); and  
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• a relationship (such as "is equal to" or "is greater than") that specifies precisely how the 
parameter will be compared to the numerical value. 

Section 3.1 provides additional information on how to develop the statement of hypotheses, and 
includes a list of commonly encountered hypotheses for environmental projects.   
 
 Some environmental data collection efforts do not involve the direct comparison of 
measured values to a fixed value.  For instance, for monitoring programs or exploratory studies, 
the goal may be to develop estimates of values or ranges applicable to given parameters.  This is 
best accomplished by the formulation of confidence intervals or tolerance intervals, which 
estimate the probability that the true value of a parameter is within a given range.  In general, 
confidence intervals consist of the following elements: 
 

• a range of values with in which the unknown population parameter of interest (such as 
the mean or median) is thought to lie; and 

 
• a probabilistic expression denoting the chance that this range captures the parameter of 

interest. 
 
An example of a confidence interval would be ‘We are 95% confident that the interval 47.3 to 
51.8 contains the population mean.’ 
 

Tolerance intervals are used with proportions.  Here, we wish to have a certain level of 
confidence that a certain proportion of the population falls in a certain region. An example of a 
tolerance interval would be ‘We are 95% confident that at least 80% of the population is above 
the threshold value.’ Section 3.2 provides additional information on confidence intervals and 
tolerance intervals.    
 

For discussion of technical issues related to statistical testing using hypotheses or 
confidence/tolerance intervals, refer to Chapter 3 of Data Quality Assessment: Statistical 
Methods for Practitioners (Final Draft) (EPA QA/G-9S).   
 
1.3 Developing Limits on Uncertainty 
 
 The goal of this activity is to develop quantitative statements of the reviewer’s tolerance 
for uncertainty in conclusions drawn from the data and in actions based on those conclusions.  
These statements are generated during DQO Process Step 6, but they can also be generated 
retrospectively as part of DQA.   
 

If the project has been framed as a hypothesis test, then the uncertainty limits can be 
expressed as the reviewer's tolerance for committing false rejection (Type I, sometimes called a 
false positive) or false acceptance (Type II, sometimes called a false negative) decision errors1.  
                                                 
1 Decision errors occur when the data collected do not adequately represent the population of interest.  For example, 
the limited amount of information collected may have a preponderance of high values that were sampled by pure 



 

EPA QA/G-9R  February 2006  10

A false rejection error occurs when the null hypothesis is rejected when it is, in fact, true.  A 
false acceptance error occurs when the null hypothesis is not rejected (often called “accepted”) 
when it is, in fact, false.  Other related phrases in common use include "level of significance" 
which is equal to the Type I error (false rejection) rate, and "power" which is equal to 1 - Type II 
error (false acceptance) rate.  When a hypothesis is being tested, it is convenient to summarize 
the applicable uncertainty limits by means of a “decision performance goal diagram”.  For 
detailed information on how to develop false rejection and false acceptance decision error rates, 
see Chapter 6 of Guidance on the Data Quality Objectives Process (QA/G-4) (U.S. EPA 2000a).   
 

If the project has been framed in terms of confidence intervals, then uncertainty is 
expressed as a combination of two interrelated terms: 
 

• the width of the interval (smaller intervals correspond to a smaller degree of 
uncertainty); and 

 
• the confidence level (typically stated as a percentage) indicating the chance this 

interval captures the unknown parameter of interest (a 95% confidence level 
represents a smaller degree of uncertainty than, say, a 90% confidence level). 

 
If the project has been framed in terms of tolerance intervals, then uncertainty is 

expressed as a combination of confidence level and: 
 

• the proportion of the population that lies in the interval. 
 

Note that there is nothing inherently preferable about obtaining a particular probability, 
such as 95% for the confidence interval.  For the same data set, there can be a 95% probability 
that the parameter lies within a given interval, as well as a 90% probability that it lies within 
another (smaller) interval, and an 80% probability of being in even a smaller interval.  All the 
intervals are centered on the best estimate of that parameter usually calculated directly from the 
data (see also Chapter 3.2). 
 
1.4 Review Sampling Design 
 
 The goal of this activity is to familiarize the reviewer with the main features of the 
sampling design that was used to generate the environmental data.  If DQOs were developed 
during planning, the sampling design will have been summarized as part of DQO Process Step 7.  
The design and sampling strategy should be discussed in clear detail in the QA Project Plan or 
Sampling and Analysis Plan.  The overall type of sampling design and the manner in which 
samples were collected or measurements were taken will place conditions and constraints on 
how the data can be used and interpreted.   
 

                                                                                                                                                             
chance.  A decision maker could possibly draw the conclusion (decision) that the target population was high when, 
in fact, it was much lower.  A similar situation occurs when the data are collected according to a plan that is too 
limited to reflect the true underlying variability. 
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 The key distinction in sampling design is between judgmental (also called authoritative) 
sampling (in which sample numbers and locations are selected based on expert knowledge of the 
problem) and probability sampling (in which sample numbers and locations are selected based 
on randomization, and each member of the target population has a known probability of being 
included in the sample).  

Judgmental sampling has some advantages and is appropriate in some cases, but the 
reviewer should be aware of its limitations and drawbacks.  This type of sampling should be 
considered only when the objectives of the investigation are not of a statistical nature (for 
example, when the objective of a study is to identify specific locations of leaks, or when the 
study is focused solely on the sampling locations themselves).  Generally, conclusions drawn 
from judgmental samples apply only to those individual samples; aggregation may result in 
severe bias due to lack of representativeness and lead to highly erroneous conclusions.  
Judgmental sampling, although often rapid to implement, precludes the use of the sample for any 
purpose other than the original one. 
 

If the reviewer elects to proceed with judgmental data, then great care should be taken in 
interpreting any statistical statements concerning the conclusions to be drawn. Using a 
probabilistic statement with a judgmental sample is incorrect and should be avoided as it gives 
an illusion of correctness where there is none.  The further the judgmental sample is from a truly 
random sample, the more questionable the conclusions. 
 

Probabilistic sampling is often more difficult to implement than judgmental sampling due 
to the difficulty of locating the random locations of the samples.  It does have the advantage of 
allowing probability statements to be made about the quality of estimates or hypothesis tests that 
are derived from the resultant data.  One common misconception of probability sampling 
procedures is that these procedures preclude the use of expert knowledge or important prior 
information about the problem.  Indeed, just the opposite is true; an efficient sampling design is 
one that uses all available prior information to stratify the region (in order to improve the 
representativeness of the resulting samples) and set appropriate probabilities of selection. 
 

Common types of probabilistic sampling designs include the following: 
 

• Simple random sampling – the method of sampling where samples are collected at 
random times or locations throughout the sampling period or study area. 
 

• Stratified sampling – a sampling method where a population is divided into non-
overlapping sub-populations called strata and sampling locations are selected randomly 
within each stratum using some sampling design. 
 

• Systematic sampling – a randomly selected unit (in space or time) establishes the starting 
place of a systematic pattern that is repeated throughout the population.  With some 
important assumptions, can be shown to be equivalent to simple random sampling. 
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• Ranked set sampling – a field sampling design where expert judgment or an auxiliary 
measurement method is used in combination with simple random sampling to determine 
which locations should be sampled. 

 
• Adaptive cluster sampling – a sampling method in which some samples are taken using 

simple random sampling, and additional samples are taken at locations where 
measurements exceed some threshold value. 

 
• Composite sampling – a sampling method in which multiple samples are physically 

mixed into a larger sample and samples for analysis drawn from this larger sample.  This 
technique can be highly cost-effective (but at the expense of variability estimation) and 
had the advantage it can be used in conjunction with any other sampling design. 

 
The document Guidance on Choosing a Sampling Design for Environmental Data Collection 
(EPA QA/G-5S) (U.S.  EPA 2002) provides extensive information on sampling design issues and 
their implications for data interpretation.   
 
 Regardless of the type of sampling scheme, the reviewer should review the sampling 
design documentation and look for design features that support the project’s objectives.  For 
example, if the reviewer is interested in making a decision about the mean level of contamination 
in an effluent stream over time, then composite samples may be an appropriate sampling 
approach.  On the other hand, if the reviewer is looking for hot spots of contamination at a 
hazardous waste site, compositing should be used with caution, to avoid "averaging away" hot 
spots.  Also, look for potential problems in the implementation of the sampling design.  For 
example, if simple random sampling has been used, can the reviewer be confident this was 
actually achieved in the actual selection of data point? Small deviations from a sampling plan 
probably have minimal effect on the conclusions drawn from the data set, but significant or 
substantial deviations should be flagged and their potential effect carefully considered.  The most 
important point is to verify that the collected data are consistent with how the QA Project Plan, 
Sampling and Analysis Plan, or overall objectives of the study stated them to be. 
 
1.5 What Outputs Should a DQA Reviewer Have at the Conclusion of Step 1?  
 

There are three outputs a DQA reviewer should have documented at the conclusion of 
Step 1: 
 

1. Well-defined project objectives and criteria, 
 

2. Verification that the hypothesis or estimate chosen is consistent with the project’s 
objective and meets the project’s performance and acceptance criteria, and 

 
3. A list of any deviations from the planned sampling design and the potential 

effects of these deviations. 
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CHAPTER 2 
 

STEP 2:  CONDUCT A PRELIMINARY DATA REVIEW 
 
 The principal goal of this step of the process is to review the calculation of some basic 
statistical quantities, and review any graphical representations of the data.  By reviewing the data 
both numerically and graphically, one can learn the "structure" of the data and thereby identify 
appropriate approaches and limitations for using the data.   
 
 There are two main elements of preliminary data review: (1) basic statistical quantities 
(summary statistics) and (2) graphical representations of the data.  Statistical quantities are 
functions of the data that numerically describe the data and include the sample mean, sample 
median, sample percentiles, sample range, and sample standard deviation.  These quantities, 
known as estimates, condense the data and are useful for making inferences concerning the 
population from which the data were drawn.  Graphical representations are used to identify 
patterns and relationships within the data, confirm or disprove assumptions, and identify 
potential problems. 
 
 The preliminary data review step is designed to make the reviewer familiar with the data.  
The review should identify anomalies that could indicate unexpected events that may influence 
the analysis of the data. 
 
2.1 Review Quality Assurance Reports 
 
 When sufficient documentation is present, the first activity is to review any relevant QA 
reports that describe the data collection and reporting process as it was actually implemented.  
These QA reports provide valuable information about potential problems or anomalies in the 
data set.  Specific items that may be helpful include: 
 

• Data verification and validation reports that document the sample collection, handling, 
analysis, data reduction, and reporting procedures used; 

 
• Quality control reports from laboratories or field stations that document measurement 

system performance.  
 

These QA reports are useful when investigating data anomalies that may affect critical 
assumptions made to ensure the validity of the statistical tests.   
 
 In many cases, such as the evaluation of data cited in a publication, these reports may be 
unobtainable.  Auxiliary questions such as “Has this project or data set been peer reviewed?”,  
“Were the peer reviewers chosen independently of the data generators?”, and “Is there evidence 
to persuade me that the appropriate QA protocols have been observed?”, should be asked to 
assess the integrity of the data.  Without some form of positive response to these questions, it is 
difficult to assess the validity of the data and the resulting conclusions.  The purpose of this 
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validity inspection of the data is to assure a firm foundation exists to support the conclusions 
drawn from the data. 

2.2 Calculate Basic Statistical Quantities 
 

The basic quantitative characteristics of the data using common statistical quantities ato 
be expected of almost any quantitative study.  It is often useful to prepare a table of descriptive 
statistics for each population when more than one is being studied (e.g., background compared to 
a potentially contaminated site) so that obvious differences between the populations can be 
identified.  Commonly used statistical quantities and the differences between them are discussed 
in Appendix A 
 
2.3 Graph the Data 
 

The visual display of data is used to identify patterns and trends in the data that might go 
unnoticed using purely numerical methods.  Graphs can be used to identify these patterns and 
trends, to quickly confirm or disprove hypotheses, to discover new phenomena, to identify 
potential problems, and to suggest corrective measures.  In addition, some graphical 
representations can be used to record and store data compactly or to convey information to 
others.  Plots and graphs of the data are very valuable tools for stakeholder interactions and often 
provide an immediate understanding of the important characteristics of the data. 
 

Graphical representations include displays of individual data points, statistical quantities, 
temporal data, or spatial data.  Since no single graphical representation will provide a complete 
picture of the data set, the reviewer should choose different graphical techniques to illuminate 
different features of the data.  At a minimum, there should be a graphical representation of the 
individual data points and a graphical representation of the statistical quantities.  If the data set 
consists of more than one variable, each variable should be treated individually before 
developing graphical representations for the multiple variables.  If the sampling plan or 
suggested analysis methods rely on any critical assumptions, consider whether a particular type 
of graph might shed light on the validity of that assumption.  Usually, graphs should be applied 
to each group of data separately or each data set should be represented by a different symbol.  
There are many types of graphical displays that can be applied to environmental data; a variety 
of data plots are shown in Appendix B. 

 
2.4 What Outputs Should a DQA Reviewer Have at the Conclusion of Step 2? 
 
At the conclusion, two main outputs should be present: 
 

1. Basic statistical quantities should have been calculated, and 
 

2. Graphs showing different aspects of the data should have been developed. 
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CHAPTER 3 
 

STEP 3:  SELECT THE STATISTICAL METHOD 
 

This step concerns the selection of an appropriate statistical method that will be used to 
draw conclusions from the data.  Detailed technical information that reviewers can use to select 
appropriate procedures may be found in Chapter 3 of Data Quality Assessment: Statistical 
Methods for Practitioners (Final Draft) (EPA QA/G-9S).  The statistical method will be selected 
based on the sampling plan used to collect the data, the type of data distribution, assumptions 
made in setting the DQOs, and any deviations from assumptions noted from Chapter 2.  
 

If a particular statistical procedure has been specified in the planning process, the 
reviewer should use the results of the preliminary data review to determine if it is appropriate for 
the data collected.  If not, then the reviewer should document what the anomaly appears to be, 
and then select a different method.  Chapter 3 of Data Quality Assessment: Statistical Methods 
for Practitioners (Final Draft) (EPA QA/G-9S) provides alternatives for several statistical 
procedures.  If a particular procedure has not been specified, then the reviewer should select one 
based upon the reviewer's objectives, the preliminary data review, and the key assumptions 
necessary for analyzing the data. 
 

All statistical tests make assumptions about the data.  For instance, so-called parametric 
tests assume some distributional form, e.g., a one-sample t-test assumes the sample mean has an 
approximate normal distribution.  The alternative, nonparametric tests, make much weaker 
assumptions about the distributional form of the data.  However, both parametric and 
nonparametric tests assume that the data are statistically independent or that there are no trends 
in the data.  While examining the data, the reviewer should always list the underlying 
assumptions of the statistical test.  Common assumptions include distributional form of the data, 
independence, dispersion characteristics, approximate homogeneity, and the basis for 
randomization in the data collection design.  For example, the one-sample t-test needs a random 
sample, independence of the data, that the sample mean is approximately normally distributed, 
that there are no outliers, and that there are few “non-detects”. 
 

Statistical methods that are insensitive to small or moderate departures from the 
assumptions and are called robust, but some tests rely on certain key assumptions. The reviewer 
should note any sensitive assumptions where relatively small deviations could jeopardize the 
validity of the test results. 
 

Appendix C shows many standard statistical tests and lists the assumptions needed for 
each.  The remainder of this chapter focuses on the two major categories of procedures that were 
presented in Section 1.2: hypothesis tests and confidence interval/tolerance interval estimation. 
 
3.1 Choosing Between Alternatives: Hypothesis Testing 
 

The full statement of a statistical hypothesis has two major parts: the null hypothesis and 
the alternative hypothesis.  For both, a population parameter (such as a mean, median, or upper 
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proportion) is compared to either a fixed value or to the same population parameter.  Although 
the language of hypothesis testing is somewhat arcane, it does describe precisely what is being 
done in choosing between alternatives. 
 

It is important to take care in defining the null and alternative hypotheses because the null 
hypothesis will be considered true unless the data demonstratively shows proof for the 
alternative. In layman’s terms, this is equivalent of an accused person appearing in civil court; 
the accused is presumed to be innocent unless shown by the evidence to be guilty by a 
preponderance of evidence.  Note the parallel: “presumed innocent” & “null hypothesis 
considered true”, “evidence” & “data”, “preponderance of evidence” & “demonstratively 
shows”.  It is often useful to choose the null and alternative hypotheses in light of the 
consequences of making an incorrect determination between them.  The true condition that 
occurs with the more severe decision error is often defined as the null hypothesis thus making it 
hard to make this kind of decision error. The statistical hypothesis framework would rather allow 
a false acceptance than a false rejection.  As with the accused and the assumption of innocence, 
the judicial system makes it difficult to convict an innocent person (the evidence must be very 
strong in favor of conviction) and therefore allows some truly guilty to go free (the evidence was 
not strong enough).  The judicial system would rather allow a guilty person to go free than have 
an innocent person found guilty. 

 
If the reviewer is interested in drawing inferences about only one population, then the 

null and alternative hypotheses will be stated in terms that relate the true value of the parameter 
to some fixed threshold value (this is known as a one-sample test).  An example of this type of 
problem is the comparison of pollutant levels in an effluent stream to a regulatory limit.  If the 
reviewer is interested in comparing two populations, then the null and alternative hypotheses will 
be stated in terms that compare the true value of one population parameter to the corresponding 
true parameter value of the other population (this is called a two-sample test).  An example of a 
two-sample problem is the comparison of a potentially contaminated waste site to a reference 
area using samples collected from the respective areas 
 

It is worth noting that all hypothesis tests have a similar structure and follow five general 
steps: 

 
1. Set up the null hypothesis 
2. Set up the alternative hypothesis 
3. Choose a test statistic 
4. Select the critical value or p-value 
5. Draw a conclusion from the test 

 
Appendix D gives examples of commonly used statements of statistical hypotheses and 

the technical aspects are discussed in Chapter 3 of Data Quality Assessment: Statistical Methods 
for Practitioners (Final Draft) (EPA QA/G-9S). 
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3.2 Estimating a Parameter: Confidence Intervals and Tolerance Intervals 
 
Estimation is used when the purpose of a project is to estimate a parameter together with 

an indication of the uncertainty of that estimate.  For example, the project’s objective may be to 
estimate the average level of pollution for a particular contaminant.  A reviewer can describe the 
desired (or achieved) degree of uncertainty in the estimate by establishing confidence limits 
within which one can be reasonably certain that the true value will lie. 

 
The most common type of interval estimate for the value of interest is a confidence 

interval.  A confidence interval may be regarded as combining a numerical “error” around an 
estimate with a probabilistic statement about the unknown parameter.  When interpreting a 
confidence interval statement such as "The 95% confidence interval for the mean is 19.1 to 
26.3", the implication is that the best estimate for the unknown population mean is 22.7 (halfway 
between 19.1 and 26.3), and that we are 95% certain that the interval 19.1 to 26.3 captures the 
unknown population mean.  In this case, the “error” (width of the confidence interval) is a 
function of the natural variability in data, the sample size, and the percentage degree of certainty 
chosen. 

 
Another type of interval estimate is the tolerance interval.  A tolerance interval specifies a 

region that contains a certain proportion of the population with a certain confidence.  For 
example, the statement ‘A 99% tolerance interval for 90% of the population is 5.7 to 9.3 ppm’, 
means that we are 99% confident that 90% of the population lies between 5.7 and 9.3 ppm. 

 
In general, confidence/tolerance intervals may be applied to any project whose goal is to 

estimate the value of a given parameter (such as mean, median, or upper percentile).  Chapter 3 
of Data Quality Assessment: Statistical Methods for Practitioners (Final Draft) (EPA QA/G-9S) 
has advice on the statistical formulation of confidence/tolerance intervals. 
 
3.3 What Output Should a DQA Reviewer Have at the Conclusion of Step 3?  
 
There are two important outputs that the reviewer should have documented from this step: 
 

1. the chosen statistical method, and 
 

2. a list of the assumptions underlying the statistical method.   
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CHAPTER 4 
 

STEP 4:  VERIFY THE ASSUMPTIONS OF THE STATISTICAL METHOD 
 

In this step, the reviewer should assess the validity of the statistical test chosen in Step 3 
by examining its underlying assumptions.  This step is necessary because the validity of the 
selected method depends upon the validity of key assumptions underlying the test.  The data 
generated will be examined by graphical techniques and statistical methods to determine if there 
have been serious deviations from the assumptions.  Minor deviations from assumptions are 
usually not critical as the robustness of the statistical technique used is sufficient to compensate 
for such deviations.  
 

If the data do not show serious deviations from the key assumptions of the statistical 
method have occurred, then the DQA process continues to Step 5, ‘Drawing Conclusions from 
the Data.’ However, it is possible that one or more of the assumptions may be called into 
question, and this could result in a reevaluation of one of the previous steps. It is important to 
note that statistically significant deviations are not always serious deviations that invalidate a 
statistical test.  For example, a statistical determination of a deviation from normality may not be 
seriously important for a very large sample size, but critically so for a small sample size.  This 
iteration in the DQA process is an important check on the validity and reliability of the 
conclusions to be drawn. 
 
4.1 Perform Tests of Assumptions 
 

Most of the commonly used hypothesis test procedures require a random sample together 
with the independence of data.  There are two commonly encountered departures from 
independence: serial patterns in data collection (autocorrelation), and clustering (clumping 
together) of data.  Some need further assumptions to make them valid; Appendix C contains 
most of the commonly encountered tests together with their needed assumptions.  Before 
implementing the statistical method selected, it is important to attain assurance that the 
assumptions needed for that method has been met.  For example, a one-sample t-test uses the 
sample mean and variance and requires the data be independent and come from an approximately 
normal distribution.  Independence may be checked qualitatively by reviewing the sampling plan 
and quantitatively by applying a test of ‘independence’.  If only a small amount of data is 
available, then the normality assumption may be checked qualitatively by inspecting the shape of 
a histogram of the data and quantitatively by applying an appropriate test for distributional 
assumptions. 
 

For any statistical test selected it is necessary for the reviewer to assess the 
appropriateness of the level of significance (Type I error rate) with respect to the risk to human 
health or resource expenditure if such a decision error were to be made.  The level of 
significance is the chance that the null hypothesis is rejected when it is actually true.  The choice 
of specific level of significance is up to the principal investigator and is a matter of experience or 
personal choice.  It does not have to be the same as that chosen in Step 3 of the DQA Process and 
it is common for a value of 5% to be chosen, although there is no compelling reason to do so.   
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4.2 Develop an Alternate Plan 
 

If it is determined that one or more of the assumptions is not met, then an alternate plan is 
needed.  This means the selection of a different statistical method or the collection of additional 
data to verify the assumptions; Chapter 3 of Data Quality Assessment: Statistical Methods for 
Practitioners (Final Draft) (EPA QA/G-9S) provides a detailed list of alternative methods. 
 
4.3 Corrective Actions 
 

A common distributional assumption is normality of the underlying populations.  If this 
assumption is not valid, then the general corrective course of action is to use a corresponding 
nonparametric procedure or investigate the use of some form of transformation of data.  There 
are many parametric tests that have nonparametric counterparts. For example, suppose a one-
sample t-test was selected and it was found that the data didn’t follow an approximate normal 
distribution.  An alternative plan would be to use the Wilcoxon Signed Rank test if the data 
follow an approximate symmetric distribution (which can be checked by inspecting a histogram 
of the data).  Parametric tests generally have more statistical power than the nonparametric tests 
when the key assumptions hold but have difficulty dealing with outliers and non-detects.  Should 
these be found in the data, then a possible alternative would be to use the corresponding 
nonparametric method as such tests handle outliers and non-detects better than parametric 
methods.  It is recommended that if anomalous data are included in the data set, analyses be 
conducted both with and without those results to understand the implications they have on 
meeting the project objectives. 
 

One of the most important assumptions underlying statistical procedures is that there is no 
inherent bias (systematic deviation from the true value) in the data.  If bias is present, substantial 
distortion of the false rejection and false acceptance decision error rates can occur and so the 
level of significance may be different than that assumed, and the statistical power weakened.  In 
general, bias cannot be discerned by examination of routine data and special studies are needed to 
estimate the magnitude of the bias.  Bias is of great concern when comparing data to a fixed or 
regulatory standard.  It is of lesser concern when comparing two or more populations as the bias 
tends to be in the same direction and so the effects usually cancel out.   
 

If a trend in the data is detected or the data are found not to be independent, then basic 
statistical methods should not be applied.  Time series analysis or geostatistical method 
investigations may be needed and a statistician should be consulted.  Common assumptions and 
the use of transformations are presented in Appendix E. 
 
4.4 What Outputs Should a DQA Reviewer Have at the End of Step 4?  
 

There are two important outputs:  
 

1. documentation of the method used to verify each assumption together with the 
results from these investigations, and 

 
2. a description of any corrective actions that were taken. 
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CHAPTER 5 
 

STEP 5:  DRAW CONCLUSIONS FROM THE DATA 
 

In this, the final step of the DQA, the reviewer now performs the statistical hypothesis 
test or computes the confidence/tolerance interval, and draws conclusions that address the 
projects objectives.  This step represents the culmination of the planning, implementation, and 
assessment phases of the project operations.  The reviewer's planning objectives will have been 
reviewed (or developed retrospectively) and the sampling design examined in Step 1.  Reports on 
the implementation of the sampling scheme will have been reviewed and a preliminary picture of 
the sampling results developed in Step 2.  In light of the information gained in Step 2, the 
statistical test will have been selected in Step 3.  To ensure that the chosen statistical methods are 
valid, the underlying assumptions of the statistical test will have been verified in Step 4.  
Consequently, all of the activities conducted up to this point should ensure that the calculations 
performed on the data set and the conclusions drawn here in Step 5 address the reviewer's needs 
in a scientifically defensible manner. 
 
5.1 Perform the Statistical Method 
 

Here the statistical method selected in Step 3 is actually performed and the hypothesis 
test completed or confidence/tolerance interval calculated. The calculations for the procedure 
should be clearly documented and easily verifiable.  In addition, documentation of the results 
should be understandable so they can be communicated effectively to those who may hold a 
stake in the resulting decision.  If computer software is used to perform the calculations, ensure 
that the procedures are adequately documented, particularly if algorithms have been developed 
and coded specifically for the project. 
 
5.2 Draw Study Conclusions 
 
 Whether hypothesis testing is performed or confidence/tolerance intervals are calculated, 
the results should lead to a conclusion about the study questions.  The conclusion should be 
expressed in plain English and not just as a statistical statement, e.g., “it is statistically 
significant”. 
 
5.3 Hypothesis Tests 
 

The goal of this activity is to translate the results of the statistical hypothesis test so that 
the reviewer may draw a conclusion from the data.  Hypothesis tests can only be used to show 
there is evidence for or against the alternative.  Failing to reject the null hypothesis does not 
prove or demonstrate there is evidence that the null is true, only that there is not sufficient 
evidence that the alternative is true. 
 



 

EPA QA/G-9R  February 2006  22

The results of the statistical hypothesis test will be either: 
 
(a) reject the null hypothesis, in which case there is sufficient evidence in favor of the 

alternative hypothesis.  The reviewer should be concerned about a possible false 
rejection error. 

 
(b) accept (fail to reject) the null hypothesis, in which case there is not sufficient 

evidence in favor of the alternative hypothesis.  The reviewer should be 
concerned about a possible false acceptance error. 

 
In case (a), the data have provided the evidence for the alternative hypothesis, so the 

decision can be made with sufficient confidence and without further analysis.  This is because 
the statistical tests described in this document inherently control the false rejection error rate 
within the reviewer's tolerable limits when the underlying assumptions are valid.   
 

In case (b), the data do not provide sufficient evidence for the alternative hypothesis.  An 
initial step is to reexamine the false rejection rate and ascertain how strictly this value is to be 
interpreted.  If it has been somewhat arbitrarily selected (by custom or precedent) then the data 
should be statistically analyzed further.  If the false rejection rate has a stricter interpretation then 
data are said not to support rejecting the null hypothesis and two outcomes considered: 
 

(1) The false acceptance decision error limits were satisfied.  In this case, the 
conclusion is drawn in favor of the null hypothesis, since the probability of 
committing a false acceptance error is believed to be sufficiently small in the 
context of the current study (see Section 5.2). 

 
(2) The false acceptance decision error limits were not satisfied.  In this case, the 

statistical test was probably not powerful enough to satisfy the reviewer's 
performance criteria.  The reviewer may choose to tolerate a higher false 
acceptance decision error rate than previously specified and draw the conclusion 
in favor of the null hypothesis, or instead implement an alternate approach such as 
obtaining additional data before drawing a conclusion and making a decision. 

 
When the test fails to reject the null hypothesis, the most thorough procedure for 

verifying whether the false acceptance error limits have been satisfied is to compute the 
estimated power of the statistical test.  The power of a statistical test is the probability of 
rejecting the null hypothesis when the null hypothesis is false and is also equal to one minus the 
false acceptance error rate.  Computing the power of the statistical test across the full range of 
possible parameter values can be complicated and usually needs statistical software. 
 

An approximate method that can be used for checking the performance of the statistical 
test utilizes the actual data generated.  Using an estimate of the variance obtained from the actual 
data or an upper confidence limit on variance, the sample size needed that satisfies the reviewer's 
objectives can be calculated retrospectively.  If this theoretical sample size is less than or equal 
to the number of samples actually taken, then the test is probably sufficiently powerful.  If the 
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theoretical number of samples is greater than the number actually collected, then additional 
samples should be collected to satisfy the reviewer's performance criteria for the statistical test.  
The method gives only approximate power as actual sample estimates are used in a retroactive 
manner as if they were known parameter values. 
 
5.4 Confidence Intervals 
 

A confidence interval is simply an interval estimate for the population parameter of 
interest.  The interval’s width is dependent upon the variance of the point estimate, the sample 
size, and the confidence level.  More specifically, the width is relatively large, if the variance is 
large, the sample size is small, or the confidence level is large. 

 
The interpretation of a confidence interval makes use of probability in an intuitive sense.  

When a confidence interval has been constructed using the data, there is still a chance that the 
interval does not include the true value of the parameter estimated.  For example, consider this 
confidence interval statement: “the 95% confidence interval for the unknown population mean is 
43.5 to 48.9”.  It is interpreted as, “I can be 95% certain that the interval 43.5 to 48.9 captures the 
unknown mean.”  Notice how there is a 5% chance that the interval does not capture the mean.  

 
The confidence level is the ‘confidence’ we have that the population parameter lies 

within the interval.  This concept is analogous to the false rejection error rate.  The width of the 
interval is related to statistical power, or the false acceptance error rate.  Rather than specifying a 
desired false acceptance error rate, the desired targeted interval width can be specified with an 
expectation that the final interval will approximately have this desired width. 

 
A confidence interval can be used to make to decisions and in some situations a test of 

hypothesis is set up as a confidence interval.  Confidence intervals are analogous to two-sided 
hypothesis tests.  If the threshold value lies outside of the interval, then there is evidence that the 
population parameter differs from the threshold value.  In a similar manner, confidence limits 
can also be related to one-sided hypothesis tests.  If the threshold value lies above (below) an 
upper (lower) confidence bound, then there is evidence that the population parameter is less 
(greater) than the threshold. 
 
5.5 Tolerance Intervals 
 

A tolerance interval is an interval estimate for a certain proportion of the population.  The 
interval’s width is dependent upon the variance of the population, the sample size, the desired 
proportion of the population, and the confidence level.  More specifically, the width is large if the 
variance is large, the sample size is small, the proportion is large, or the confidence level is large. 

 
When a tolerance interval has been constructed using the data, there is still a chance that 

the interval does not include the desired proportion of the population.  For example, consider this 
tolerance interval statement: “the 99% tolerance interval for 90% of the population is 7.5 to 9.9”.  
It is interpreted as, “I can be 99% certain that the interval 7.5 to 9.9 captures 90% of the 
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population.”  Notice how there is a 1% chance that the interval does not capture the desired 
proportion.  

The confidence level is the ‘confidence’ we have that the desired proportion of the 
population lies within the interval.  This concept is analogous to the false rejection error rate.  
The width of the interval is partially related to statistical power (false acceptance error rate).  
Rather than specifying a desired false acceptance error rate, the desired interval width can be 
specified. 

 
A tolerance interval can be used to make to decisions and in some situations a test of 

hypothesis is set up as a tolerance interval.  Tolerance intervals are analogous to a hypothesis 
test.  If the threshold value lies outside of the interval, then there is evidence that the desired 
proportion of the population differs from the threshold value.  In a similar manner, tolerance 
limits can also be related to one-sided hypothesis tests.  If the threshold value lies above (below) 
an upper (lower) tolerance limit, then there is evidence that the desired proportion of the 
population is less (greater) than the threshold. 
 
5.6 Evaluate Performance of the Sampling Design 
 

If the sampling design is to be used again, either in a later phase of the current study or in 
a similar study, the reviewer will be interested in evaluating the overall performance of the 
design.  To evaluate the sampling design, the reviewer performs a statistical power analysis that 
describes the estimated power of the statistical test over the range of possible parameter values.  
The estimated power is computed for all parameter values under the alternative hypothesis to 
create a power curve.  A power analysis helps the reviewer evaluate the adequacy of the 
sampling design when the true parameter value lies in the vicinity of the action level (which may 
not have been the outcome of the current study).  In this manner, the reviewer may determine 
how well a statistical test performed and compare this performance with that of other tests. 
 

The calculations needed to perform a power analysis can be relatively complicated, 
depending on the complexity of the sampling design and statistical test selected.  A further 
discussion of power curves (performance curves) is contained in the Guidance on the Data 
Quality Objectives Process (QA/G-4) (U.S. EPA 2000a), and Visual Sample Plan (VSP).  VSP is 
free software (http://dqo.pnl.gov/vsp/) that can be used to determine theoretical sample sizes for 
determination of whether enough data is available to meet the specified decision error tolerances. 
 
5.7 What Output Should the DQA Reviewer Have at the End of Step 5?  
 
 At the end of Step 5, there should be several outputs regarding conclusions based on the 
data: 
 

1. Statistical results with a specified significance level, 
2. study conclusion in plain English, and 
3. an assessment of performance of the sampling design. 
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CHAPTER 6 
 

INTERPRETING AND COMMUNICATING THE TEST RESULTS 
 
 At the conclusion of DQA Step 5, the reviewer has performed the applicable statistical 
test, and has drawn conclusions from this test.  In many cases, the conclusions are so 
straightforward and convincing that they readily lead to an unambiguous path forward for the 
project.  There are occasions where difficulties may arise in interpreting or explaining the results 
of a statistical test, or issues arise related to the scope and nature of the data set.  This chapter 
looks at some issues relating to data interpretation and data sufficiency. 
 
6.1 Data Interpretation:  The Meaning of p-values 
 
 The classical approach for hypothesis tests is to pre-specify the significance level of the 
test, i.e., the false rejection error rate (Type I error rate).  This rate is used to define the decision 
rule associated with the hypothesis test.  For instance, in testing whether the population mean 
exceeds a threshold level (e.g., 100 ppm), the test statistic usually involves the average of the 
results obtained.  Now due to random variability, it is quite possible to have a sample average 
slightly greater than 100ppm even though the true (but unknown) mean concentration is less than 
or equal to 100ppm.  However, if the sample mean is "much larger" than 100 ppm, then there is 
only a small chance that the true site mean concentration is below the threshold.  Hence the 
decision rule might take the form “reject the null hypothesis if the sample average exceeds 100 + 
C", where C is a positive quantity that depends on the specified acceptable false rejection rate 
and on the variability of the data.  If this does happen, then the result of the statistical test is 
reported as "reject the null hypothesis"; otherwise, the result is reported as "do not reject the null 
hypothesis." 
 
 The conclusions of the hypothesis test have to be presented in plain English to avoid 
misinterpretation.  The phrase “reject the null hypothesis” can be explained in plain English as 
“it is highly unlikely the base line assumption (null hypothesis) is true”.  The phrase “fail to 
reject the null hypothesis” or equivalently, “do not reject the null hypothesis” can be explained in 
plain English as “there is insufficient evidence to disprove the base line assumption (null 
hypothesis)”. 
 
 An alternative way of reporting the result of a statistical test is to report its p-value, which 
is defined as the probability, assuming the null hypothesis to be true, of observing a test result at 
least as extreme as that found in the data.  Many statistical software packages report p-values, 
rather than adopting the classical approach of using a pre-specified false rejection error rate.  In 
the above example, for instance, the p-value would be the probability of observing a sample 
mean as large or larger than as the sample mean obtained if in fact the true mean was equal to 
100 ppm.  Obviously, in making a decision based on the p-value, one should reject the null 
hypothesis when p is small and not reject it if p is large.  Thus the relationship between p-values 
and the classical hypothesis testing approach is that one rejects the null hypothesis if the p-value 
associated with the test result is less than the agreed upon false rejection rate.  If an analyst had 
chosen the false rejection error rate as 0.05 before the data were collected and reported a p-value 
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of 0.12, then the conclusion would be "do not reject the null hypothesis"; if the p-value had been 
reported as 0.03, then the conclusion would be "reject the null hypothesis."  An advantage of 
reporting p-values is that they provide a measure of the strength of evidence for or against the 
null hypothesis, which allows reviewers to establish their own false rejection error rates.  The 
significance level can be interpreted as that p-value that divides "do not reject the null 
hypothesis" from "reject the null hypothesis." 
 
6.2 Data Interpretation: "Accepting" vs. "Failing to Reject" the Null Hypothesis 
 

The classical approach to hypothesis testing results in one of two conclusions:  "reject the 
null hypothesis" (called a significant result) or "do not reject the null hypothesis" (a 
nonsignificant result).  In the latter case one might be tempted to equate "do not reject" with 
"accept."  Strictly speaking this not correct because of the philosophy underlying the statistical 
testing procedure.  This philosophy places the burden of proof on the alternative hypothesis; that 
is, the null hypothesis is rejected only if the sample result convinces us that the alternative 
hypothesis is the more likely state of nature.  If a nonsignificant result is obtained, it provides 
evidence that the null hypothesis could sufficiently account for the observed data, but it does not 
imply that the hypothesis is the only hypothesis that could be supported by the data.  In other 
words, a highly nonsignificant result (e.g., a p-value of 0.80) may indicate that the null 
hypothesis provides a reasonable model for explaining the data, but it does not necessarily imply 
that it is the only reasonable model, and therefore does not imply that the null hypothesis is true.  
It may, for example, simply indicate that the sample size was not large enough to establish 
convincingly that the alternative hypothesis was more likely.  When the phrase "accept the null 
hypothesis" is encountered, it should be considered as "accepted with the preceding caveats." 
 
6.3 Data Sufficiency:  "Proof of Safety" vs. "Proof of Hazard" 
 
 The establishment of null and alternative hypotheses is not simply an arbitrary exercise; 
the manner in which hypotheses are framed can have consequences for the expense of data 
collection, for the adequacy of the collected data, and ultimately for the outcome of the project.  
This is because the null hypothesis will be allowed to stand unless the data convincingly 
demonstrate that it should be rejected in favor of the alternative (in other words, the “burden of 
proof” is on the alternative hypothesis).  During DQA, the reviewer should consider this issue 
and its impact on the conclusions of the study, if it was not resolved through the DQO Process. 
 
 In general, this question can be considered as a tradeoff between “proof of safety” (i.e., 
the null hypothesis assumes the existence of an environmental problem, and the alternative 
position will be accepted only if we can reject the null), versus “proof of hazard” (i.e., the null 
hypothesis assumes that there is no environmental problem).  Formulating a set of hypotheses 
unavoidably builds into them an implicit preference about what outcome we can “live with” in 
the absence of compelling evidence to the contrary.  This can lead to consequences such as: 
 

• Environmental contamination may remain undetected, or a mitigation effort may be 
launched unnecessarily. 
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• The degree to which a cleanup level has been achieved may be greater or lesser. 
• Depending on the range of measured values compared to threshold values, there may be a 

need for additional data collection to resolve the hypothesis. 
 

 As there are potential “real-world” consequences of hypothesis formulation, some 
environmental programs determine in advance (by either regulation or guidance) how hypotheses 
will be defined, rather than leave it to a case-by-case determination.  In effect, this can be viewed 
as a programmatic policy on the “proof of safety” vs.  “proof of hazard” tradeoff.  See Table 6-1 
for some examples. 

 
 

Table 6-1.  Selected Guidelines for Establishment of Hypotheses 
 

Program Sample Provision Reference 

Radiation Protection 

“The objective of final status (decommissioning) 
surveys is typically to demonstrate that residual 
radioactivity levels meet the release criterion.  In 
demonstrating that this objective is met, the null 
hypothesis…tested is that residual contamination 
exceeds the release criterion; the alternative 
hypothesis…is that residual contamination meets 
the release criterion.” 

Multi-Agency 
Radiation Survey 
and Site 
Investigation 
Manual 
(MARSSIM) (U.S. 
EPA 2000b) 

Whole Effluent 
Toxicity Testing 

“The concept of hypothesis testing relies on the 
ability to distinguish statistically significant 
differences between a control treatment and other 
test treatments….hypothesis testing techniques… 
test the null hypothesis…that there is no difference 
between the control treatment and other test 
treatments (the effluent is not toxic).  This null 
hypothesis is rejected (the effluent is determined to 
be toxic) if the difference between the control 
treatment and any other test treatment is statistically 
significant.” 

Method Guidance 
and 
Recommendations 
for Whole Effluent 
Toxicity (WET) 
Testing (40 CFR 
Part 136) (U.S.  
EPA 2000c) 

Brownfields 

“Generally, the more severe consequences of 
making the wrong decision at a Brownfields site 
occur when the site is actually contaminated above 
established health limits, but the decision-maker 
acts on data that erroneously indicate that the site is 
clean.  In this situation, human health could be 
endangered if reuse occurs without cleanup.  
Therefore, the null hypothesis is likely to be ‘the site 
is too dirty for the reuse scenario’, and the site 
assessment is then designed to show that the site is 
clean, which is the alternative hypothesis ” 

Quality Assurance 
Guidance for 
Conducting 
Brownfields Site 
Assessments 
(U.S. EPA 1998) 
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In cases where a planner (or the reviewer, when hypotheses are being generated 
retroactively) does have flexibility in formulating hypotheses, one difficulty may be obtaining a 
consensus on which error should be of most concern.  The ideal approach is not only to set up the 
direction of the hypothesis in such a way that controlling the false rejection error protects the 
health and environment, but also to set it up in a way that minimizes uncertainty as well as 
expenditure of resources in situations where decisions are relatively "easy" (e.g., all observations 
are far from the threshold level of interest). 
 
6.4 Data Sufficiency:  Quantity vs. Quality of Data 
 

With environmental data collection, there are often a variety of methods available for 
determining the results.  For example, with chemical measurements of environmental media, 
several different analytical methods for determining the concentrations of chemicals in the 
sample are available.  Project teams encounter difficult decisions in the planning phase when 
they have to decide whether to gather more samples using inexpensive analytical methods or 
fewer samples using expensive methods.  The trade-off between quantity and quality of data is 
complex.   

 
It is intuitive that the more data that are available, the stronger certainty there can be in 

the decision that is reached.  However, it is also possible that much less data, but of higher 
quality, could improve the certainty in the decision.  This is especially true if the precision differs 
greatly between the available sample analysis methods.  When debating selection of analytical 
method and the choice between quality and quantity of data, the statistical methods that will be 
used to determine the answer to the study questions should be considered and the analytical 
method that maximizes the expected certainty in decision-making should be selected.  There are 
techniques, such as Collaborative Sampling, that can assist in addressing this dilemma but it 
rarely can be applied after the sample has been collected (see Guidance on Choosing a Sampling 
Design for Environmental Data Collection, U.S. EPA QA/G-5S). 
 
6.5 Data Sufficiency:  Statistical Significance vs. Practical Significance  
 

Statistical significance is a concept based on the weight of evidence that a hypothesis is 
valid.  It is never possible to have perfect knowledge about a population being studied, but it is 
possible to learn enough about it to be able to say with confidence that a particular hypothesis 
concerning that population cannot be true.  However, one should be very careful not to allow the 
statistics to dictate decisions without recourse to common sense.  In particular, as more and more 
data are collected, it becomes easier and easier to achieve statistical significance.  The concern is 
that at some point it may be possible to determine statistical significance at levels that are not of 
practical significance.  This can be illustrated through the following example: 

 
Based on operations at an industrial plant, and their waste release permit, it is expected that 
the pH of water leaving the plant will be 5.9.  The releases are monitored by weekly 
collections and each week these data are combined with all previous data and the average 
pH is compared to 5.9.  After the first few months, the average release pH is 5.88, which is 
not statistically significantly different from 5.9 and the conclusion of no real difference 
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justified.  After several years have elapsed the average release pH is 5.8996 and this is 
statistically significantly different from the permitted value of 5.9, but yet a conclusion of a 
real difference be justified?  This is a case where having so much data allows the reviewer 
to identify very small differences from the expected level, but the statistically significant 
result may very well not have any practical significance (in this case a difference in pH of  
0.0004, which is barely measurable).   

 
While statistics provide a strong and essential tool for environmental decision-making, the 
science of statistics is not a substitute for common sense and can lead to bad decisions if not 
tempered with practicality.   
  
6.6 Conclusions 
 
 This document may be used to either assist in conducting a DQA, or in reviewing an 
existing DQA.  Steps 1-5 should be followed roughly in the order presented.  However, it may 
occasionally be productive to revisit earlier steps based on information gleaned during the DQA 
process.  For that reason it is often beneficial to view this as an iterative process rather than one 
for which all inputs should be gathered sequentially.  Data quality assessment should be 
conducted on all data intended for use in decision-making, regardless of the level of planning 
defined prior to data collection. 
 
 The information contained in this document is meant to provide an overview of the DQA 
process.  There are several levels of assistance available from EPA for those conducting DQAs: 
 

1. The checklist in Appendix F provides a de minimus list of outputs necessary for a 
complete DQA.  This can be used on its own to check that the DQA is complete. 

 
2. This document provides further explanation for each of the outputs on the checklist.  

The user can either begin with the checklist and refer back to this document as 
necessary, or follow the steps as laid out in chapters 1-5 of this document directly. 

 
3. Data Quality Assessment: Statistical Methods for Practitioners (Final Draft) (EPA 

QA/G-9S) provides much more detail for implementation of a DQA.  Again the DQA 
reviewer can either refer to that document as necessary for details of implementation 
of selected methods, or can perform a DQA by following chapters 1-5 of that 
document directly. 

 
4. EPA Quality Staff offers an introductory course in Data Quality Assessment.  If the 

course is not being offered at a time and location convenient for you, it may be 
downloaded from http://www.epa.gov/quality/trcourse.html#intro_dqa. 
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APPENDIX A:  COMMONLY USED STATISTICAL QUANTITIES 
 

Measures of Central Tendency: 
Measures of the center of a sample of data points 

 
Mean:  The most commonly used measure of the center of a sample is the sample mean, denoted 
by X .  This estimate of the center of a sample can be thought of as the "center of gravity" of the 
sample.  The sample mean is an arithmetic average for simple sampling designs; however, for 
complex sampling designs, such as stratification, the sample mean is a weighted arithmetic 
average.  The sample mean is influenced by extreme values (large or small) and non-detects.  
 
Median:  The sample median is the second most popular measure of the center of the data.  This 
value falls directly in the middle of the data when the measurements are ranked in order from 
smallest to largest.  This means that ½ of the data are smaller than or equal to the sample median 
and ½ of the data are larger than or equal to the sample median.  The median is another name for 
the 50th percentile.  The median is not influenced by extreme values and can easily be used in the 
case of censored data (non-detects).  
 
Mode:  The third method of measuring the center of the data is the mode.  The sample mode is 
the value of the sample that occurs with the greatest frequency.  Since this value may not always 
exist, or if it does it may not be unique, this value is the least commonly used.  However, the 
mode is useful for describing qualitative data.  
 

Measures of Relative Standing: 
Relative position of one observation in relation to all observations 

 
Percentiles:  A percentile is the data value that is greater than or equal to a given percentage of 
the data values.  Stated in mathematical terms, the pth percentile is a data value that is greater 
than or equal to p% of the data values and is less than or equal to (1-p)% of the data values.  
Therefore, if 'x' is the pth percentile, then p% of the values in the data set are less than or equal to 
x, and (100-p)% of the values are greater than or equal to x.  A sample percentile may fall 
between a pair of observations.  For example, the 75th percentile of a data set of 10 observations 
is not uniquely defined as it falls between the 7th and 8th largest values.  Important percentiles 
usually reviewed are the quartiles of the data, the 25th, 50th, and 75th percentiles. Also important 
for environmental data are the 90th, 95th, and 99th percentile where a decision maker would like to 
be sure that 90%, 95%, or 99% of the contamination levels are below a fixed risk level.  There 
are several methods for computing sample percentiles. 
 
Quantiles:  A quantile is very similar in concept to a percentile; however, a percentile represents 
a percentage whereas a quantile represents a fraction.  If x is the p/100 quantile of the data, then 
the fraction p/100 of the data values lie at or below x and the fraction (1-p)/100 of the data values 
lie at or above x, whereas if 'x' is the pth percentile, then at least p% of the values in the data set 
lie at or below x, and at least (100-p)% of the values lie at or above x.  For example, the 0.95 
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quantile has the property that 0.95 of the observations lie at or below x and 0.05 of the data lie at 
or above x.  

Measures of Dispersion: 
Measures of how the data spread out from the center 

 
Range:  The easiest measure of dispersion to compute is the sample range, maximum - 
minimum.  For small samples, the range is easy to interpret and may adequately represent the 
dispersion of the data.  For large samples, the range is not very informative because it only 
considers (and therefore is greatly influenced) by extreme values which could be outliers. 
 
Variance and Standard Deviation:  The variance measures the dispersion of the data from the 
mean and is denoted by s2.  A large variance implies that there is a large spread among the data 
so that the data are not clustered around the mean.  A small variance implies that there is little 
spread among the data so that most of the data are near the mean.  The variance is affected by 
extreme values and by a large number of non-detects.  The standard deviation (s) is the square 
root of the sample variance and has the same unit of measure as the data.   
 
Coefficient of Variation:  The coefficient of variation (CV) is a unitless measure that allows the 
comparison of dispersion across several sets of data.  The CV is the standard deviation divided 
by the mean.  It is also called the relative standard deviation (RSD). 
 
Interquartile Range:  When extreme values are present, the interquartile range may be more 
representative of the dispersion of the data than the standard deviation.  It is the difference 
between the first and third quartiles (25th and 75th percentiles) of the data.  This statistical 
quantity does not depend on extreme values and is therefore useful when the data include a large 
number of non-detects.   
 

Measures of Association: 
The relationship between two or more variables 

 
Pearson’s Correlation Coefficient:  The Pearson (often “Pearson” is omitted) correlation 
coefficient measures a linear relationship between two variables.  Values of the correlation 
coefficient close to +1 (positive correlation) imply that as one variable increases so does the 
other, the reverse holds for values close to –1 (negative correlation).  Values close to 0 imply 
little correlation between the variables.  The correlation coefficient does not detect nonlinear 
relationships so it should be used only in conjunction with a scatterplot graph of the data.  A 
scatterplot can be used to determine if the correlation coefficient is meaningful or if some 
measure of nonlinear relationships should be used.  The correlation coefficient can be 
significantly changed by extreme values so a scatter plot should be used first to identify such 
values.  Note that correlation does not imply cause and effect. 
 
Spearman’s Rank Correlation Coefficient:  An alternative to the Pearson correlation is 
Spearman’s rank correlation coefficient.  It is calculated by first replacing each X value by its 
rank (i.e., 1 for the smallest X value, 2 for the second smallest, etc.) and each Y value by its rank.  
These pairs of ranks are then treated as the (X,Y) data and Spearman’s rank correlation is 
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calculated using the same formulae as for Pearson’s correlation. Spearman’s correlation will not 
be altered by nonlinear increasing transformations of the Xs or the Ys. 
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Example Box- 
and-Whiskers Plot

APPENDIX B:  GRAPHICAL REPRESENTATION OF DATA 
 

 This appendix contains examples of several types of 
common graphical representations of data. 
 
Histogram/Frequency Plots 
 
Description: Divide the data range into units, count the 
number of points within the units, and display the data as the 
height (frequency plot) or area (histogram) within a bar graph. 
 
Drawbacks: Demands the reviewer make arbitrary choices to 
partition the data.  
 
Uses:   Distribution - A normal distribution will be bell-shaped. 
 Symmetry - Symmetric data has the same amount of 

data either side of the center point.   
 Variability - Both plots indicate the spread of the data 

(standard deviation, variance). 
 Skewness – Right (positive) skewed data have a large 

number of low values, relatively few high values. 
 
NOTE: The y-axis of a histogram can also represent relative 
frequencies which are frequencies divided by the sample size. 
 
Box- and-Whiskers Plot 
 
Description: Composed of a central box divided by a horizontal line 
representing the median and two lines extending out from the box 
called whiskers.  The length of the central box indicates the spread of 
the bulk of the data (the central 50%) while the length of the whiskers 
show how stretched the tails of the distribution are.  The sample mean 
is displayed using a ‘+’ sign and any unusually small or large data 
points are displayed by a ‘*’ on the plot.  
 
Drawbacks: Schematic diagram instead of numerical. 
 
Uses: Statistical Quantities - Visualize the relationships. 

Symmetry - If the distribution is symmetrical, the box is divided 
in two equal halves by the median, the whiskers will be the 
same length and the number of extreme data points will be 
distributed equally on either end of the plot for symmetric data. 
Outliers - Values that are unusually large or small are easily identified. 
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Stem-and-Leaf Plot 
 
Description: Each observation in the stem-and-leaf 
plot consists of two parts:  the stem of the observation 
and the leaf.  The stem is usually made up of the 
leading digit of the numerical values while the leaf is 
made up of trailing digits in the order that 
corresponds to the order of magnitude from left to 
right.  The stem is displayed on the vertical axis and 
the data points displayed from left to right.  
 
Advantages: Stores data in a compact form while, at 
the same time, sorts the data from smallest to largest.  
Non-detects can be placed in a single stem. 
 
Drawbacks: Demands the reviewer make arbitrary choices to partition the data.  
 
Uses:  Distribution - Normally distributed data is approximately bell shaped. 

Symmetry - The top half of the stem-and-leaf plot will be a mirror image of the bottom 
half of the stem-and-leaf plot for symmetric data.   
Skewness -  Left skewed (negative) data have many high values, relatively few low 
values.  Left skewed data are relatively rare with environmental  measurements. 

 
Ranked Data Plot 
 
Description: A plot of the data from smallest to 
largest at evenly spaced intervals. 
 
Advantages:  Easy to construct, easy to interpret, 
makes no assumptions about a model for the data, and 
shows every data point.  
 
Uses:    Density - A large amount of data values have a 

flat slope, i.e., the graph rises slowly.  A small 
amount of data values have a large slope, i.e., 
the graph rises quickly.  

  Skewness - A plot of data that are skewed to the 
right (many low values, but few high) extends mores sharply at the top giving the graph 
a ‘J’ shape.  A plot of data that are skewed to the left (few low values, but many high) 
increases sharply near the bottom giving the graph an inverted ‘J’ shape. 

  Symmetry - The top portion of the graph will stretch to upper right corner in the same 
way the bottom portion of the graph stretches to lower left, creating an S-shape, for 
symmetric data. 

Example Stem-and-Leaf Plot 
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Quantile Plot 
 
Description: A graph of the data against the quantiles. 
 
Advantages: Easy to construct, easy to interpret, 
makes no assumptions about a model for the data, 
and displays every data point. 
 
Uses:    Density - A large amount of data values 

has a flat slope, i.e., graph rises slowly.  A 
small amount of data values has a large 
slope, i.e., the graph rises quickly.   

  Skewness - A plot of data that are skewed 
to the right (many low values, but few 
high) is steeper at the top right than the 
bottom left.  A quantile plot of data that 
are skewed to the left (few low values, but 
many high) increases sharply near the 
bottom left of the graph.   
Symmetry - The top portion of the graph will stretch to the upper right corner in the same 
way the bottom portion of the graph stretches to the lower left, creating an S-shape for 
symmetric data. 

 
 
Normal Probability Plot (Two Variables) 
 
Description: The graph of the quantiles of a data set 
against the quantiles of the normal distribution plotted 
on normal probability graph paper. 
 
Drawbacks: Tedious to generate by hand, but can 
be created with most statistical software. 
 
Uses:   Normality - The graph of normally distributed 

data should be linear.  
  Symmetry - The degree of symmetry can be 

determined by comparing the right and left 
sides of the plot.  
Outliers - Data values that are much larger or 
much smaller than rest will cause the other 
data values to be compressed into the middle 
of the graph, ruining the resolution. 
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Scatterplot (Two Paired Variables) 
 
Description: Paired values are plotted on separate axes. 
 
Advantages: Clearly shows the relationship between 
two variables, easy to construct. 
 
Uses:    Correlation/Trends - Linearly correlated 

variables cluster around straight line.  Nonlinear 
patterns may be obvious.  
Outliers - Potential outliers from a single variable 
or from paired variables may be identified. 
Clustering - Points clustered together can be 
easily identified. 

 
Time Plot (Temporal Data) 
 
Description: A plot of the data over time. 
 
Advantages: Easy to generate and interpret. 
 
Uses:    Trends - Including large-scale and small-

scale, seasonal (patterns that repeat over 
time), and directional (downward/upward 
trends) including subtle shifts.  
Serial Correlation – Shows relationship 
between successive observations. 

 Variability - Look for increasing or 
decreasing variability over time. 

  Outliers - Values that are unusually large 
or small are easily identified.  
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Posting Plots (Spatial Data) 
 
Description: Map of data locations together  

with corresponding data values.   
 
Drawback: May not be feasible for a large 
   amount of data 
 
Uses:  Errors - Identify obvious errors in data  
   location and values. 

Sampling Design - Easy way to review  
design. 

  Trends - Obvious trends can be 
  identifified. 
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APPENDIX C:  COMMON HYPOTHESIS TESTS 
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Other Assumptions 

One-Sample t-Test X X X X X  

Wilcoxon Signed 
Rank Test X X    

• Not many data values are identical 
• Symmetric 

Compare a mean to a fixed number 
- for example, to determine whether 
the mean contaminant level is greater 
than 10 ppm 

Chen Test X X   X 
• Data come from a right-skewed 

distribution (like a lognormal 
distribution) 

Wilcoxon Signed 
Rank Test X X    

• Not many data values are identical 
• Symmetric 

Compare a median to a fixed 
number - for example, to determine 
whether the median is greater than    
8 ppm Sign Test X X    

• Not many sample values equal to the 
fixed level (reduces efficiency) 

Compare a proportion or 
percentile to a fixed number - for 
example, to determine if 95% of all 
companies emitting sulfur dioxide 
into the air are below a fixed 
discharge level. 

One-Sample 
Proportion Test X X    Not many sample values equal to the 

fixed level (reduces efficiency) 

Compare a variance to a fixed 
number - for example, to determine 
if the variability of an analytical 
method exceeds a fixed number. 

Chi-squared test X X X    
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Other Assumptions 

Compare a correlation coefficient 
to a fixed number - for example, 
determine if the correlation between 
two contaminants exceeds 0.5. 

z-Test of a 
Correlation 
Coefficient 

X X X X  • Linear relationship 

Student's  
Two-Sample t-Test 

X X X X  • Approximately the same underlying  
variance for both populations 

Compare two means - for example, 
to compare the mean contaminant 
level at a remediated Superfund site 
to a background site or to compare 
the mean of two different drinking 
water wells. 

Satterthwaite's  
Two-Sample t-Test 

X X X X   

Compare several means against a 
control population - for example, to 
compare different analytical methods 
to the standard method.  

Dunnett’s Test X X    • All group sizes are approximately 
equal  

Compare two proportions or 
percentiles - for example, to compare 
the proportion of children with 
elevated blood lead in one area to the 
proportion of children with elevated 
blood lead in another area.  

Two-Sample Test for 
Proportions X X     

Compare two correlations - for 
example, to determine which of two 
contaminants is a better predictor of a 
third 

Kendall’s Test X X X   • Linear relationships 
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Other Assumptions 

F-Test X X X X X • 2 populations only 

Bartlett's Test X X X X X • 2 or more populations 
Compare the variances of 2 or 
more populations - for example, to 
compare the variances of several 
analytical methods. 

Levene's Test X X X X X • 2 or more populations 

Wilcoxon Signed 
Rank  Test 

X X    

• The two distributions have the same 
shape and dispersion (approximately) 

• Only a few identical values 
• The difference is assumed to be some 

fixed amount 

Determine if one population 
distribution differs from another 
distribution - for example, to 
compare the contaminant levels at 
a remediated Superfund site those 
of a background area.   Quantile Test X X  X  

• Equal variances 
• Data generated using systematic or 

simple random sampling design 
• The difference is assumed to be only 

in the upper part of the distributions 
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APPENDIX D:  COMMONLY USED STATEMENTS OF HYPOTHESES 
 

 

Type of Decision Null Hypothesis Alternative 
Hypothesis 

Compare environmental conditions to a fixed 
threshold value, such as a regulatory standard or 
acceptable risk level; presume that the true 
condition is at most the threshold value. 

The value of the 
measured parameter 
is at most the 
threshold value. 

The value of the 
measured parameter 
is greater than the 
threshold value. 

Compare environmental conditions to a fixed 
threshold value; presume that the true condition is 
at least the threshold value. 

The value of the 
measured parameter 
is at least the 
threshold value. 

The value of the 
measured parameter 
is less than the 
threshold value. 

Compare environmental conditions to a fixed 
threshold value; presume that the true condition is 
equal to the threshold value and the reviewer is 
concerned whenever conditions vary significantly 
from this value. 

The value of the 
measured parameter 
is equal to the 
threshold value. 

The value of the 
measured parameter 
is not equal to the 
threshold value. 

Compare environmental conditions associated with 
two different populations to a fixed threshold value 
such as a regulatory standard or acceptable risk 
level; presume that the true condition is at most the 
threshold value.  If it is presumed that conditions 
associated with the two populations are the same, 
the threshold value is 0. 

The difference 
between the two 
measured parameters 
is at most the 
threshold value. 

The difference 
between the two 
measured parameters 
is greater than the 
threshold value. 

Compare environmental conditions associated with 
two different populations to a fixed threshold value 
such as a regulatory standard or acceptable risk 
level; presume that the true condition is at least the 
threshold value.  If it is presumed that conditions 
associated with the two populations are the same, 
the threshold value is 0. 

The difference 
between the two 
measured parameters 
is at least the 
threshold value. 

The difference 
between the two 
measured parameters 
is less than the 
threshold value. 

Compare environmental conditions associated with 
two different populations to a fixed threshold value 
such as a regulatory standard or acceptable risk 
level; presume that the true condition is equal to 
the threshold value.  If it is presumed that 
conditions associated with the two populations are 
the same, the threshold value is 0. 

The difference 
between the two 
measured parameters 
is equal to the 
threshold value. 

The difference 
between the two 
measured parameters 
is not equal to the 
threshold value. 
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APPENDIX E:  COMMON ASSUMPTIONS AND TRANSFORMATIONS 
 
Independence 
 

The assumption of independence of data is the key to the validity of the false rejection 
and false acceptance error rates associated with a selected statistical test.  Environmental data are 
particularly susceptible to correlation problems due to the fact that data are collected under a 
spatial pattern (for example a grid) or sequentially over time (for example, daily readings from a 
monitoring station).  Readings taken close together can be correlated (known as autocorrelation) 
and the effectiveness of statistical tests is diminished.  When data are truly independent between 
themselves, the correlation between data points is by definition zero and  statistical tests have the 
desired chosen decision error rates (given appropriate other assumptions have been satisfied). 

 
The reason non-independence is an issue for statistical testing situations is that if 

observations are positively correlated over time or space, then the effective sample size for a test 
tends to be smaller than the actual sample size – i.e., each additional observation does not 
provide as much "new" information because its value is partially determined by (or a function of) 
the value of adjacent observations.  This smaller effective sample size means that the degrees of 
freedom for the test statistic decreases, or equivalently, the test is not as powerful as originally 
thought.  In addition to affecting the false acceptance error rate, applying the usual tests to 
correlated data tends to result in a test whose actual significance level (false rejection error rate) 
is larger than the nominal error rate. 

 
Non-independence also occurs when data are actually collected in groups and not 

randomly over the entire sample.  For example, suppose there are 5 locations each with 4 
measurements on a contaminant.  This is different from 20 locations each with 1 measurement on 
a contaminant.  If the 5-location data are analyzed as if it was 20-location data incorrect 
conclusions may occur.  In the 5-location data set, each group of 4 measurements could be 
expected to be approximately the same and, overall, not as diverse as the 20-location data set.  In 
statistical terms, this is because the 5-location data set variability can be partitioned into two 
sources of variability: between locations, and within locations.  The 20-location data set cannot 
be partitioned into the two sources as only 1 measurement was taken at each location.  Between 
locations variability is usually much larger than within location variability and so the 5-location 
data can be considered “more lumpy” than the 20-location data and this will affect the analysis.  

 
One of the most effective ways to determine statistical independence for data collected 

over time is through use of the Rank von Neumann Test.  Compared to other tests of statistical 
independence, the rank von Neumann test has been shown to be more powerful over a wide 
variety of cases.  This means that very little effectiveness is lost by always using the ranks in 
place of the original concentrations; the rank von Neumann ration should still correctly detect 
non-independent data.  Details on how to use the rank von Neumann test are to be found in Data 
Quality Assessment: Statistical Methods for Practitioners (Final Draft) (EPA QA/G-9S). 
 



 

EPA QA/G-9R  February 2006 50

Distributional Assumptions 
 

Many statistical tests and models are only 
appropriate for data that follow a particular distribution.  
Two of the most important distributions for tests 
involving environmental data are the normal 
distribution and the lognormal distribution.   

 
The assumption of normality is very important, 

as it is the basis for the majority of statistical tests.  A 
normal distribution is a reasonable model of the 
behavior of certain random phenomena and can often 
be used to approximate other probability distributions.  
In addition, the Central Limit Theorem shows that as 
the sample size gets large, some of the sample summary statistics (e.g., the sample mean) behave 
as if they are a normally distributed variable.  As a result, a common assumption associated with 
parametric tests or statistical models is that the errors associated with data, or a proposed model, 
approximate a normal distribution.  
 

Environmental data commonly exhibit distributions that are non-negative and skewed 
with heavy or long right tails.  Several standard probability models have these properties, 
including the Weibull, gamma, and lognormal distributions.  The lognormal distribution is a 
commonly used distribution for modeling environmental contaminant data.  The advantage to 
this distribution is that a simple (logarithmic) transformation will transform a lognormal 
distribution into a normal distribution.  So, methods for testing for normality can be used to test 
for lognormality if a logarithmic transformation has been used. 

 

Tests for Normality 

Test Sample 
Size Recommended Use 

Shapiro-Wilk Test # 50 Highly recommended but difficult to compute by 
hand. 

Filliben's Statistic  # 100 Highly recommended but difficult to compute. 

Geary's Test > 50 Useful when tables for other tests are not available. 

Studentized Range 
Test # 1000 

Highly recommended if the data are symmetric, the 
tails of the data are not heavier than the normal 
distribution, and there are no extreme values.  

Chi-Square Test Large 
Useful for grouped data and when the comparison 
distribution is known.  May be used for other 
distributions besides the normal distribution 
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Outliers 
 

Outliers are measurements that are extremely large or small relative to the rest of the data 
and, therefore, are suspected of misrepresenting the population from which they were collected.  
Outliers may result from transcription errors, data-coding errors, or measurement system 
problems such as instrument breakdown.  However, outliers may also represent true extreme 
values of a distribution (for instance, hot spots) and indicate more variability in the population 
than was expected.  Not removing true outliers and removing false outliers both lead to a 
distortion of estimates of population parameters. 

 
Statistical outlier tests give the reviewer probabilistic evidence that an extreme value 

(potential outlier) does not "fit" with the distribution of the remainder of the data and is therefore 
a statistical outlier.  These tests should only be used to identify data points that need further 
investigation.  The tests alone cannot determine whether a statistical outlier should be discarded 
or corrected within a data set; this decision should be based on expert or scientific grounds. 

 
Potential outliers may be identified through a graphical representation of the data.  If a 

data point is found to be an outlier, the reviewer may either:  1) correct the data point; 2) discard 
the data point from analysis; or 3) use the data point in all analyses.  This decision should be 
based on scientific reasoning  in addition to the results of the statistical test.  One should never 
discard an outlier based solely on a statistical test.  Instead, the decision to discard an outlier 
should be based on some scientific or quality assurance basis.  Discarding an outlier from a data 
set should be done with extreme caution, particularly for environmental data sets, which often 
contain legitimate extreme values.  If an outlier is discarded from the data set, all statistical 
analysis of the data should be applied to both the full and truncated data set so that the effect of 
discarding observations may be assessed.  If scientific reasoning does not explain the outlier, it 
should not be discarded from the data set.   

 
If no data points are discarded, document the identification of any "statistical" outliers by 

documenting the statistical test performed and the possible scientific reasons investigated.  If any 
data points are discarded, document each data point, the statistical test performed, the scientific 
reason for discarding each data point, and the effect on the analysis of deleting the data points.  

 
Statistical Tests for Outliers 

Sample Size Test Assumes 
Normality 

Multiple 
Outliers 

n # 25 Extreme Value Test Yes Yes 

n # 50 Discordance Test Yes No 

n ∃ 25 Rosner's Test Yes Yes 

n ∃ 50 Walsh's Test No Yes 
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Values below Detection Limits 
 
Data generated from chemical analysis may fall below the detection limit (DL) of the 

analytical procedure.  These measurement data are generally described as not detected, or non-
detects, (rather than as zero or not present) and the appropriate limit of detection is usually 
reported.  In cases where measurement data are described as not detected, the concentration of 
the chemical is unknown although it lies somewhere between zero and the detection limit.  Data 
that includes both detected and non-detected results are called censored data in the statistical 
literature. 

 
There are a variety of ways to evaluate data that include values below the detection limit.  

However, there are no general procedures that are applicable in all cases.  All of the suggested 
procedures for analyzing data with non-detects depend on the amount of data below the detection 
limit.  For relatively small amounts below detection limit values, replacing the non-detects with a 
small number and proceeding with the usual analysis may be satisfactory.  For moderate amounts 
of data below the detection limit, a more detailed adjustment is appropriate.  In situations where 
relatively large amounts of data below the detection limit exist, one may need only to consider 
whether the chemical was detected as above some level or not.  The interpretation of small, 
moderate, and large amounts of data below the DL is subjective.   

 
In addition to the percentage of samples below the detection limit, sample size influences 

which procedures should be used to evaluate the data.  For example, the case where 1 sample out 
of 4 is not detected should be treated differently from the case where 25 samples out of 100 are 
not detected.  In some cases, the data investigator should consult a statistician for the most 
appropriate way to evaluate data containing values below the detection level.  In no case should 
the non-detects be discarded and the resulting data set analyzed as if the non-detects had never 
been recorded.  Serious bias will result, leading to questionable conclusions. 

 

Guidelines for Analyzing Data with Non-detects 

Approximate 
Percentage of Non-

detects 
Statistical Analysis Method 

< 15% Replace non-detects with 0, 
DL/2, DL; Cohen’s Method 

15% - 50% 
Trimmed mean, Cohen's 
adjustment, Winsorized mean 
and standard deviation. 

> 50% - 90% Use tests for proportions 
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Transformations 
 
Data that do not satisfy statistical assumptions can sometimes be converted or 

transformed mathematically into a form that allows standard statistical tests to perform 
adequately.  Any mathematical function that is applied to every point in a data set is called a 
transformation and the most commonly used transformation is: 

 
Logarithmic (Log X or Ln X):  This transformation may be used when the original 
measurement data follow a lognormal distribution or when the standard deviation of 
measurements is proportional to the mean of the data points at that level.  
 
By transforming the data, assumptions that are not satisfied in the original data can be 

satisfied by the transformed data.  For instance, a right-skewed distribution can be transformed to 
be approximately Gaussian (normal) by using a logarithmic or square-root transformation.  Then 
the normal-theory procedures can be applied to the transformed data.  If data are lognormally 
distributed, then apply procedures to logarithms of the data.  However, selecting the correct 
transformation may be difficult and the reviewer should consult a statistician. 

 
Once the data have been transformed, all statistical analysis should be performed on the 

transformed data.  Very rarely should data be transformed back to the original units after analysis 
and conclusions drawn with the transformed data set this can lead to biased estimates.  For 
example, estimating quantities such as means, variances, confidence limits, and regression 
coefficients in the transformed scale typically leads to biased estimates when transformed back 
into original scale.  However, it may be difficult to understand or apply results of statistical 
analysis expressed in the transformed scale.  Therefore, if the transformed data do not give 
noticeable benefits to the analysis, it is usually better to use the original data with a different 
technique of analysis.   
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APPENDIX F:  CHECKLIST OF OUTPUTS FOR DATA QUALITY ASSESSMENT 
 

Step Input G-9R 
Section 

G-9S 
Section 

1 Well-defined project objectives and 
criteria  1.1 1.1 

1 
Verification that the hypothesis chosen 
is consistent with the objective and 
criteria  

1.2 1.1 

1 
A list of any deviations from the 
planned sampling design and the effects 
of these deviations 

1.4 1.1 

2 Statistics of interest have been 
calculated 2.2 2.2 

2 Graphs and plots of the data are 
available 2.3 2.3 

3 The statistical method for data analysis 
has been selected  3.0 3.1 

3 The assumptions underlying the method 
have been identified 3.0 3.2 – 3.4 

4 
Documentation of the method used to 
verify each assumption and the results 
from these investigations 

4.1 4.1 

4 
A description and rationale for any 
corrective actions that were taken, if 
any were necessary 

4.2 & 4.3 4.1 

5 Statistical results with a specified 
significance level  5.1 5.2 

5 An assessment of the performance of 
the sampling design 5.5 5.4 

5, 6 Interpretation of the statistical result and 
study conclusions 

5.3 – 5.4, 
6.1 & 6.2 5.5 

6 A final product or decision 6.3 – 6.5 5.5 
 

G-9R: Data Quality Assessment: A Reviewer’s Guide 
G-9S: Data Quality Assessment: Statistical Methods for Practitioners (Final Draft) 
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